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Abstract

Consider a real-valued Lévy process with non-zero Brownian compo-
nent and jumps with locally finite variation. We obtain an invariance
principle theorem for the speed of approximation of its occupation mea-
sure by means of functionals defined on regularizations of the paths.
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1 Lévy processes

Let X = {Xt : t ≥ 0} be a real-valued Lévy process, defined on a probability
space (Ω,F , P ), that we represent by

Xt = σWt + St +mt. (1)

Here W = {Wt : t ≥ 0} is a standard Wiener process, S = {St : t ≥ 0} a pure
jump process with càdlàg paths, m and σ are real constants, and we assume
that the Gaussian part does not vanish, i.e. σ > 0. Denote by F = {Ft : t ≥ 0}
the minimal filtration generated by X, that satisfy the usual assumptions (see
Jacod and Shiryaev (1987)).

Furthermore, assume that

(FV) the jump part of the process has locally finite variation, i.e. for each
positive t,

∑
0<r≤t

∣∣∆Sr∣∣ is almost surely finite,
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where, as usual, we denote f(r−) the left limit of a càdlàg function f on the
point r, and ∆fr = f(r)− f(r−) is the magnitude of its jump at this point.

In view of (FV), the random variable St satisfies

St =
∑

0<s≤t

∆Xs.

Given a positive constant a, it will be useful to define the processes Sa =
{Sat : t ≥ 0} and Xa = {Xa

t : t ≥ 0} by

Sat =
∑

0<s≤t

∆Xs1{|∆Xs|≥a}, (2)

that is the (a.s. finite) sum of jumps of the process greater or equal than a, and

Xa
t = mt+ σWt + Sat , (3)

respectively.
The characteristic function of the random variable Xt has the standard form

E
(
ezXt

)
= etκ(z), where the function κ(z) (defined for the complex values of z

such that this expectation is finite) has the form

κ(z) = mz +
1
2
σ2z2 +

∫
R

(
ezy − 1)Π(dy). (4)

Here Π(dy), the Lévy-Khinchine measure of the process, is a non-negative
measure defined on R \ {0} that, in accordance with condition (FV) above,
satisfies

∫
(1 ∧ |y|)Π(dy) < ∞. We denote by νt(dy) the Poisson jump mea-

sure of the process on the interval [0, t]. Note that for each t > 0, we have
a.s. νt

(
{|x| ≥ δ}

)
< ∞ for every δ > 0. For general references on Lévy pro-

cesses see Skorokhod (1991), Bertoin (1996) or Sato (1999).

2 Regularized Lévy processes

We now describe the regularization of the trajectories, that, in our context, is
interpreted as a partial observation of the process through a physical device.
Let ψ : R→ R

+ be a C1 function with compact support, say supp(ψ) ⊂ [−1, 1],
such that

∫ 1

−1
ψ(t)dt = 1 and, for ε > 0, define the approximation of unity

ψε(t) =
1
ε
ψ
( t
ε

)
.

We denote by ‖ψ‖ =
( ∫ 1

−1
ψ2(t)dt

)1/2 the norm of ψ in L2(R, dt). The regular-
ization Xε = {Xε

t : t ≥ 0} of the process is obtained by convolution with ψε in
the following way:

Xε
t =

(
ψε ∗X

)
t

=
∫
R

ψε(t− s)Xsds =
∫ 1

−1

ψ(−w)Xt+wεdw, (5)
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where we set Xs = Ws = Ss = 0 if s < 0. In the same way, we define W ε =
{W ε

t : t ≥ 0} and Sε = {Sεt : t ≥ 0}, and obtain that Xε
t = mt−εmα+σW ε

t +Sεt
where α =

∫
R
wψ(w)dw.

Observe that the regularized processes inherits the regularity properties of
ψ, so that Xε has C1 paths. For further reference, we compute the time-
derivative (denoted with a dot) of the regularized process, that can be written
as a stochastic integral:

Ẋε
t =

∫
R

∂

∂t

(
ψε(t− s)

)
Xsds =

1
ε

∫ 1

−1

ψ̇(−w) (Xt+εw −Xt−ε) dw

=
∫
R

ψε(t− s)dXs =
1
ε

∫ 1

−1

ψ(−w)dw
(
Xt+εw

)
. (6)

Similar formulae hold for W ε, Sε and Sa,ε. In particular,

Ẇ ε
t =

1
ε

∫ 1

−1

ψ̇(−w)(Wt+εw −Wt−ε)dw,

which implies, for t ∈ [0, T ] and 0 < ε < 1:

|εẆ ε
t | ≤ 2‖ψ̇‖∞ sup

|h|<ε,t∈[0,T ]

|Wt+h −Wt−ε| ≤ Cη(ω)ε1/2−η, (7)

with η ∈ (0, 1/2) arbitrary, and Cη(ω) a random constant independent of ε; we
also have that

√
εẆ ε

t has centered Gaussian distribution, with variance ‖ψ‖2.

If F : R+ → R is a C1 function, we denote the number of crossings of the
level u by the function F on an interval I = [s, t], by

NF
u [s, t] = ]{r : Fr = u, r ∈ I}, (8)

that is, the number of roots belonging to I of the equation Ft = u. It is easy to
verify, that, for a given continuous function f : R→ R, we have∫ ∞

−∞
f(u)NF

u [0, T ]du =
∫ T

0

f
(
Ft
)
|Ḟt|dt. (9)

3 Main Result

The aim of Theorem 1 below is to approximate the occupation measure of the
process X on the interval [0, T ] by a re-normalization of the number of crossings
of the processXε = {Xε

t : t ≥ 0} with horizontal levels on the same time interval.

Theorem 1 Consider a Lévy process X = {Xt : t ≥ 0} with characteristic
exponent given in (4), σ > 0, finite variation jump component, and the regular-
ization Xε = {Xε

t : t ≥ 0} defined in (5). Then, for each C2-function f : R→ R
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with bounded second derivative, we have

1√
ε

[∫
R

f(u)Cε
√
εNXε

u [0, t]du− σ
∫ t

0

f(Xs)ds
]
− Cε

∫ t

0

f(Xε
s )|Ṡεs |ds

⇒ D

∫ t

0

f(Xs)dBs (10)

as ε→ 0, where:

• B = {Bt : t ≥ 0} is a Wiener process independent of X;

• The first constant is

Cε =
σ

E(
√
ε|σẆ ε

1 +m|)
→ 1
‖ψ‖

√
π

2
= C0 (ε→ 0). (11)

• The second constant is

D2 = 2σ2

∫ 2

0

(
r(t) Arsin r(t) +

√
1− r2(t)− 1

)
dt, (12)

where r(t) is a covariance function defined by

r(t) =
1
‖ψ‖2

∫
ψ(t− u)ψ(−u)du.

• ⇒ denotes weak convergence in the space C = C([0,+∞) ,R) of continous
functions.

Before proving the Theorem we make some remarks on the statement.

Remarks.
1.- A simple consequence of Theorem 1 is that for each t > 0, one has∫

R

f(u)Cε
√
εNXε

u [0, t]du→ σ

∫ t

0

f(Xs)ds in probability (13)

as ε → 0. This result can be used to estimate σ from the observation of the
smoothed path Xε. Results of type (13) are well-known for semimartingales
having continuous paths (Azäıs & Wschebor, 1997) and also other classes of
processes (Azäıs & Wschebor, 1996), where almost sure convergence is proved.

2.- Theorem 1 contains the speed of convergence in (13). This allows to
make inference on σ from the observation of Xε.

Analogous results for processes with continuous paths are in Berzin & León
(1994) for Brownian motion and in Perera & Wschebor (1998, 2002) for certain
classes of continuous semi-martingales having Itô-integrals as martingale part.
Even if X is a Brownian motion, the proof below seems to be simpler and more
direct than previously published ones.
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There exist also some related results for Brownian motion and general diffu-
sions, where the approximation Xε of the actual path X is replaced by polygonal
approximation and the smooth function f by a Dirac-delta function, or consid-
ering functionals defined on random walks. See for example, Dacunha-Castelle
and Florens (1986), Florens (1993), Génon-Catalot and Jacod (1993), Borodin
and Ibragimov (1994), and Jacod (1998, 2000). In this context, if ε is the size
of the discretization in time, then the speed of convergence turns out to be of
the order ε1/4.

3.- We shall prove (see Proposition 3 in next section) that for each t > 0 the
bias term

Lε(f, t) = Cε

∫ t

0

f(Xε
s )
∣∣Ṡεs ∣∣ds (14)

in (10), almost surely converges, as ε→ 0, to

L0(f, t) = C0

∑
0<s≤t

L(f, s)
∣∣∆Xs

∣∣ (15)

where

L(f, t) =
∫ 1

−1

ψ(z)f
(
Xt−

∫ 1

z

ψ(w)dw +Xt

∫ z

−1

ψ(w)dw
)
dz. (16)

It follows that one can replace Theorem 1 by the statement

1√
ε

[∫
R

f(u)Cε
√
εNXε

u [0, t]du− σ
∫ t

0

f(Xs)ds
]
− L0(f, t) (17)

converges cilindrically to the law of D
∫ t

0
f(Xs)dBs.

With this statement, the bias term does not depend on ε, but excepting the
case of trivial f , we lose weak convergence when the jump part of X does not
vanish.

4 Proofs

Proof of Theorem 1

In order to prove the Theorem we first observe, in view of (9), that∫
R

f(u)NXε

u [0, t]du =
∫ t

0

f(Xε
s )|Ẋε

s |ds, a.s.
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Write our expression as the sum of three terms:

1√
ε

∫ t

0

f(Xε
s )Cε

√
ε|Ẋε

s |ds−
σ√
ε

∫ t

0

f(Xs)ds− Cε
∫ t

0

f(Xε
s )|Ṡεs |ds

= Cε

∫ t

0

f(Xε
s )
(
|Ẋε

s | − |σẆ ε
s +m| − |Ṡεs |

)
ds

+ Cε

∫ t

0

f(Xε
s )|σẆ ε

s +m|ds− Cε
∫ t

0

f(Xs)|σẆ ε
s−ε +m|ds

+
1√
ε

∫ t

0

(
Cε
√
ε|σẆ ε

s−ε +m| − σ
)
f(Xs)ds.

We now introduce the following simplification, that will be useful for the proof.
Given an arbitrary δ ∈ (0, 1) there exists b > 0 such that there is no jump
with absolute value greater than b, with probability greater that 1 − δ. The
given Lévy process can be written as Xt = (Xt − Sbt ) + Sbt , where the random
processes {Sbt : t ≥ 0} (defined in (2)) and {Xt−Sbt : t ≥ 0} are independent. A
standard argument shows that it is enough to prove the result for the process{
Xt − Sbt : 0 ≤ t ≤ T

}
, so, in what follows, we assume that the support of N is

contained in the interval [−b, b]. Under this additional hypothesis, it is easy to
see that for each t ≥ 0 the random variable Xt has finite moments of all orders.

In what follows, the parameter of the various processes we will consider vary
in a fixed interval [0, T ].

We divide the proof into three steps:

1. Proof of

Z1,ε
t =

∫ t

0

f(Xε
s )
(
|Ẋε

s | − |σẆ ε
s +m| − |Ṡεs |

)
ds⇒ 0. (18)

2. Proof of

Z2,ε
t =

∫ t

0

f(Xε
s )|σẆ ε

s +m|ds−
∫ t

0

f(Xs)|σẆ ε
s−ε +m|ds⇒ 0 (19)

3. Proof of

Z3,ε
t =

1√
ε

∫ t

0

(
Cε
√
ε|σẆ ε

s−ε +m| − σ
)
f(Xs)ds⇒ D

∫ t

0

f(Xt)dBs.

(20)

Proof of Step 1. We prove

sup
0≤t≤T

∣∣∣ ∫ t

0

f(Xε
s )
(
|Ẋε

s | − |σẆ ε
s +m| − |Ṡεs |

)
ds
∣∣∣→ 0 a.s. (ε→ 0).

Since there exists an almost surely finite random variable M(ω) such that

sup
0≤s≤T

|f(Xε
s )| ≤M(ω), sup

0≤s≤T
|f(Xs)| ≤M(ω), (21)
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it is enough to prove that∫ T

0

∣∣∣|Ẋε
s | − |σẆ ε

s +m| − |Ṡεs |
∣∣∣ds→ 0 a.s. (ε→ 0).

We have∣∣∣|Ẋε
s | − |σẆ ε

s +m| − |Ṡεs |
∣∣∣ ≤ 2 min

(
|σẆ ε

s +m|, |Ṡεs |
)

≤ 2 min
(
|σẆ ε

s +m|, |Ṡa,εs |
)

+ 2|Ṡa,εs − Ṡεs |.

We claim that

sup
0<ε≤1

∫ T

0

|Ṡεs − Ṡa,εs |ds→ 0 a.s. (a→ 0). (22)

In fact, denoting g(x) = |x|1{|x|<a}, in view of (6), we have

|Ṡεt − Ṡ
a,ε
t | ≤

∣∣∣1
ε

∫ 1

−1

|ψ̇(−w)|
∑

t−ε<v≤t+εw

g(∆Xv)dw
∣∣∣

≤ 2
ε
‖ψ̇‖∞

∑
t−ε<v≤t+ε

g(∆Xv).

Furthermore, if G(t) =
∑

0<v≤t g(∆Xv) and 0 < ε ≤ 1, we obtain∫ T

0

|Ṡεs − Ṡa,εs |ds ≤
2
ε
‖ψ̇‖∞

∫ T

0

(
G(t+ ε)−G(t− ε)

)
dt

=
2
ε
‖ψ̇‖∞

∫ T

0

(∫ t+ε

t−ε
G(dv)

)
dt

≤ 2
ε
‖ψ̇‖∞

∫ T+1

0

(∫ v+ε

v−ε
dt
)
G(dv)

= 4‖ψ̇‖∞G(T + 1)

= 4‖ψ̇‖∞
∑

0<t≤T+1

|∆Xt|1{|∆Xt|<a},

and (22) follows.
Consider now a fixed. Put τ0 = 0, and denote the succesive epochs of jump

with absolute value not smaller that a by

τn = inf{t > τn−1 : |∆Xt| ≥ a} (n = 1, 2, . . . ).

Denote also by Nt = max{n : τn ≤ t} (t ≥ 0) the number of these jumps up
to time t. Fix ω ∈ Ω, and choose ε > 0 such that the intervals (τn − ε, τn +
ε) (n = 1, . . . , NT ) are disjoint. Taking into account that Ṡa,ε = 0 outside these
intervals, and applying (7) with η = 1/4, we obtain for s ∈ [0, T ]:

min
(
|σẆ ε

s +m|, |Ṡa,εs |
)
≤ Ĉ1/4(ω)ε−3/4

NT∑
n=1

1(τn−ε,τn+ε)(s).
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where Ĉ1/4 is a new constant depending on ω ∈ Ω, and on the parameters m,σ.
We then obtain∫ T

0

min
(
|σẆ ε

s +m|, |Ṡa,εs |
)
ds ≤

NT∑
n=1

∫ τn+ε

τn−ε
Ĉ1/4(ω)ε−3/4ds

= 2Ĉ1/4(ω)NT (ω)ε1/4.

From this inequality and (22) the statement of Step 1 follows.

Proof of Step 2. First observe that∫ t

0

f(Xs)|σẆ ε
s−ε +m|ds =

∫ t−ε

−ε
f(Xs+ε)|σẆ ε

s +m|ds

which implies

Z2,ε
t =

∫ t

0

(
f(Xε

s )− f(Xs+ε)
)
|σẆ ε

s +m|ds

−
∫ 0

−ε
f(Xs+ε)|σẆ ε

s +m|ds+
∫ t

t−ε
f(Xs+ε)|σẆ ε

s +m|ds.

For the second integral, we have∣∣∣ ∫ 0

−ε
f(Xs+ε)|σẆ ε

s +m|ds
∣∣∣ ≤M(ω)Ĉ1/4(ω)ε1/4,

where M(ω) is given in (21). (Remember that Ws = 0 if s < 0, but W ε
s does

not necessarily vanishes for s < 0.) A similar bound holds for the third integral.
So, in order to obtain (19), we must prove that

Ẑ2,ε
t =

∫ t

0

(
f(Xε

s )− f(Xs+ε)
)
|σẆ ε

s +m|ds⇒ 0 (23)

Denote

fεt = f(Xε
t )− f(Xt+ε), gεt = |σẆ ε

t +m|.

Given S < T we compute the second moment:

E
(
Ẑ2,ε
T − Ẑ

2,ε
S

)2 = 2
∫∫

S≤s+2ε≤t≤T
E(fεs f

ε
t g
ε
sg
ε
t )dsdt (24)

+ 2
∫∫

S≤s≤t≤s+2ε≤T
E(fεs f

ε
t g
ε
sg
ε
t )dsdt = 2(L1 + L2).

We denote by ∆ε
t the increment

∆ε
t = Xε

t −Xt+ε =
∫ 1

−1

ψ(−w)(Xt+wε −Xt+ε)dw

= σ∆ε,W
t + ∆ε,S

t − εm(α+ 1)
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(with the obvious notation). Furthermore

E
(
∆ε,W
t

)2 =
∫∫

ψ(−u)ψ(−v)E
(
(Wt+εu −Wt+ε)(Wt+εv −Wt+ε)

)
dudv

= ε

∫∫
ψ(−u)ψ(−v)(1− u ∨ v)dudv.

Now we apply Taylor’s expansion:

fεt = f(Xt+ε + ∆ε
t )− f(Xt+ε) = f ′(Xt+ε)∆ε

t +
1
2
f ′′(Xt+ε + θ∆ε

t )(∆
ε
t )

2/2

= f ′(Xt−ε)∆ε
t +

(
f ′(Xt+ε)− f ′(Xt−ε)

)
∆ε
t (25)

+
1
2
f ′′(Xt+ε + θ∆ε

t )(∆
ε
t )

2/2 (26)

where 0 < θ < 1.
Take now conditional expectations in the integrand corresponding to L1 in

(28):

E(fεs f
ε
t g
ε
sg
ε
t ) = E

(
fεs g

ε
sE(fεt g

ε
t /Ft−ε)

)
.

Plug the Taylor expansion for fεt into the last expectation and consider each
term. First, as ∆ε

tg
ε
t is independent of Ft−ε,

E
(
f ′(Xt−ε)∆ε

tg
ε
t /Ft−ε

)
= f ′(Xt−ε)E(∆ε

tg
ε
t )

= f ′(Xt−ε)
[
σE(∆ε,W

t gεt ) + E(∆ε,S
t )E(gεt )− εm(α+ 1)E(gεt )

]
since S and W are independent processes.

For the first term in brackets, substracting E
(
∆ε,W
t |σẆ ε

t |
)

= 0, we have∣∣E(∆ε,W
t gεt )

∣∣ =
∣∣∣E(∆ε,W

t (|σẆ ε
t +m| − |σẆ ε

t |)
)∣∣∣

≤ |m|E
∣∣∆ε,W

t

∣∣ = (const)ε1/2.

In what concerns the second term in brackets,

E
∣∣∆ε,S

t

∣∣ ≤ ‖ψ‖∞E( ∑
t−ε<s≤t+ε

|∆Xs|
)

= ‖ψ‖∞2ε
∫
|x|Π(dx),

so that ∣∣E(∆ε,S
t )E(gεt )

∣∣ ≤ (const)ε1/2,

and we obtain:∣∣E(f ′(Xt−ε)∆ε
tg
ε
t | Ft−ε

)∣∣ ≤ |f ′(Xt−ε)| (const) ε1/2

≤
(
‖f ′′‖∞|Xt−ε|+ 1

)
(const)ε1/2.
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Furthermore∣∣∣E((f ′(Xt+ε)− f ′(Xt−ε)
)
∆ε
tg
ε
t | Ft−ε

)∣∣∣
=
∣∣∣E((f ′′(Xt−ε + θ′(Xt+ε −Xt−ε)

)
(Xt+ε −Xt−ε)∆ε

tg
ε
t | Ft−ε

)∣∣∣
≤ ‖f ′′‖∞E

(∣∣σ(Wt+ε −Wt−ε) + St+ε − St−ε + 2mε
∣∣× |∆ε

t |gεt
)
,

where 0 < θ′ < 1. A standard computation with normal distributions shows
that:

E
(
|∆ε,W

t |2 [gεt ]
2 ) ≤ (const)

So, by Cauchy-Schwarz’s inequality we obtain

E
(∣∣σ(Wt+ε −Wt−ε) + St+ε − St−ε + 2mε

∣∣× |∆ε,W
t |gεt

)
≤ (const)ε1/2.

Also

E
(∣∣Wt+ε −Wt−ε

∣∣× |∆ε,S
t |gεt

)
= E

(∣∣Wt+ε −Wt−ε
∣∣gεt)E|∆ε,S

t | ≤ (const)ε.

As for the other term

E
(∣∣St+ε − St−ε∣∣× |∆ε,S

t |gεt
)
= E

(∣∣(St+ε − St−ε)∆ε,S
t

∣∣)E|gεt | ≤ (const)ε1/2,

because E|gεt | ≤ (const)ε−1/2 and

E
(∣∣(St+ε − St−ε)∆ε,S

t

∣∣)
= E

∣∣∣ ∫ 1

−1

ψ(−w)(St+ε − St−ε)(St+wε − St+ε)dw
∣∣∣ ≤ (const)ε.

Let us now consider the result of plugging the last term of (26) into the
conditional expectation. We have:∣∣∣E(f ′′(Xt+ε + θ∆ε

t )(∆
ε
t )

2gεt /Ft−ε
)∣∣∣ ≤

(const)‖f ′′‖∞E
(
σ2(∆ε,W

t )2gεt + (∆ε,S
t )2gεt + ε2gεt

)
≤ (const)ε1/2, (27)

based on similar computations. Summing up, we obtain (in the integral L1):

E(fεs g
ε
s/Ft−ε) ≤ (const)ε1/2.

This also shows that

E(fεs g
ε
s) ≤ (const)ε1/2,
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so that

L1 ≤ (const)(T − S)2ε. (28)

On the other hand, let us show that for s, t ∈ [0, T ] and 0 < ε ≤ 1 the
expectation E

(
fεs f

ε
t g
ε
sg
ε
t

)
is bounded.

Applying Cauchy-Schwarz’s inequality, it suffices to prove the boundedness
of

E
{

(fεt g
ε
t )

2
}

for t ∈ [0, T ] and 0 < ε < 1. Check that

E
{

(fεt g
ε
t )

2
}
≤ (const) (‖f ′′‖∞ + 1)2 ×[

E
{
X2
t−ε (∆ε

tg
ε
t )

2 + E
{

(∆ε
t )

4 (gεt )
2
}}

+ E
{

(Xt+ε −Xt−ε)2(∆ε
t )

2(gεt )
2
}]
,

and the proof of the boundedness of this expression follows in much a similar
way as the one of L1.

This implies, first, that

E
(
(Ẑ2,ε

T − Ẑ
2,ε
S )2

)
≤ (const)(T − S)2

for 0 ≤ S, T ≤ T0, hence that {Ẑ2,ε
T : 0 ≤ T ≤ T0} is tight in C([0, T0],R) and,

second, that

E
(
(Ẑ2,ε

T )2
)
≤ (const)T 2ε,

so that, for fixed T , Ẑ2,ε
T → 0 (ε→ 0) in L2. This proves (23).

Proof of Step 3. Introduce the processes yε = {yεt : t ≥ 0} and Y ε = {Y εt : t ≥
0} defined by

yεt = Cε
√
ε|σẆ ε

t−ε +m| − σ, Y εt =
1√
ε

∫ t

0

yεsds, t ≥ 0.

Let us prove that

Y ε ⇒ DB, (29)

where B = {Bt : t ≥ 0} is a Wiener process independent of X, and D the
constant in (12).

In order to see this, first observe that, since yεt depends on the increments of
the process W on the interval [t− ε, t+ ε], the process yε is 2ε-dependent, and
as a consequence, the process Y ε has asymptotically independent increments as
ε → 0. This means that any cluster point in the weak topology for the family
of processes {Y ε : t ≥ 0} as ε → 0 is a process with independent increments.
Analogous arguments give that any cluster point has stationary increments. In
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order to complete the proof of (29), we prove the tightness in the space of
continuous functions.

E(Y εt − Y εs )4 =
1
ε2
E
(∫ t

s

yεudu
)4

=
4!
ε2

∫ t

s

du1

∫ u1+2ε

u1

du2

∫ t

u2

du3

∫ u3+2ε

u3

du4E(yεu1
yεu2

yεu3
yεu4

)

≤ 4× 4!(s− t)2E
(
yεu)4 ≤ (const)(t− s)2,

where we have used (i) the 2ε-dependence of {Ẇ ε
t : t ≥ 0}, (ii) the fact that due

to the choice of Cε we have E(yεt ) = 0, and (iii) the fact that E
(
yεu)4 converges

to a finite limit, as ε → 0. This proves the tightness property (see 12.51 in
Billingsley (1968)). As Y ε is a centered process, in order to conclude (29) it
remains to compute the constant D. This constant can be obtained as

D2 = lim
ε→0

E
(
Y ε1
)2
.

Now,

E
(
Y ε1
)2 =

1
ε

∫ 1

0

∫ 1

0

E
(
yεsy

ε
t

)
dsdt =

2
ε

∫ 1

0

dt

∫ (t+ε)∧1

t

E
(
yεsy

ε
t

)
∼ 2
ε

∫ 2ε

0

E
(
yε1y

ε
1+t

)
dt = 2

∫ 2

0

E
(
yε1y

ε
1+εu

)
dt→ 2σ2

∫ 2

0

E
(
g(U0)g(Uu)

)
du.

with U defined in (30), and g(x) defined in (32). The rest of the computation
of the constant D is presented in the following result.

Given ε > 0 define the process Uε = {Uεt : t ≥ 0} by

Uεt =
√
ε

‖ψ‖
Ẇ ε
εt−ε (30)

For t ≥ 2, Uε is a centered Gaussian stationary process with covariance function

r(t) = E(Uε2U
ε
2+t) =

ε

‖ψ‖2
E(Ẇ ε

ε Ẇ
ε
ε(1+t))

=
1
‖ψ‖2

∫
ψ(t− u)ψ(−u)du, (31)

(where we used (6)). We conclude that the distribution of Uε does not depend
on ε (excluding the interval [0, 2]), and introduce the process U as a centered
Gaussian stationary process with covariance given by (31), that can be put in
place of Uε for our purposes. Observe that E(Ut)2 = 1.

Lemma 2 Define

g(x) =
√
π

2
|x| − 1, (x ∈ R). (32)

Then

12



(1) E
(
g(Ut)

)
= 0.

(2) E
(
g(U0)g(Ut)

)
= r(t) Arsin r(t) +

√
1− r2(t)− 1.

Proof. As U0 is a standard Gaussian random variable (1) is direct. In order
to see (2), denote by

p(x, y, r) =
1

2π
√

1− r2
exp

{ −1
2(1− r2)

[
x2 + y2 − 2rxy

]}
,

the density of the Gaussian bidimensional vector (U0, Ut) with r = r(t). If we
denote f(r) = E

(
g(U0)g(Ut)

)
, it is not difficult to verify the following formal

calculations:

f ′′(r) =
∂

∂r

∫∫
R2
g(x)g(y)

∂

∂r
p(x, y, r)dxdy

=
∂

∂r

∫∫
R2
g(x)g(y)

∂2

∂x∂y
p(x, y, r)dxdy

=
∂

∂r

∫∫
R2
g′(x)g′(y)p(x, y, r)dxdy =

∂

∂r
f ′(r) (33)

=
∫∫

R2
g′′(x)g′′(y)p(x, y, r)dxdy = 2πp(0, 0, r) =

1√
1− r2

.

Here g′′(x) = 2
√
π/2δ0 where δ0 denotes a Dirac delta function at the origin,

we twice use ∂
∂rp(x, y, r) = ∂2

∂x∂yp(x, y, r), and twice integrate by parts. When
r = 0 the random variables U0 and Ut are independent. This gives f(0) =
E
(
g(U0)g(Ut)

)
= E

(
g(U0)

)2 = 0, by (1); and, by the intermediate step (33) we
also have f ′(0) = E

(
g′(U0)g′(Ut)

)
= E

(
g′(U0)

)2 = 0. Finally, integrating twice
we get

E
(
g(U0)g(Ut)

)
= r(t) Arsin r(t) +

√
1− r2(t)− 1,

concluding the proof of the Lemma.
We now claim that

(Y ε,W )⇒ (DB,W ) (34)

where (B,W ) is a pair of standard independent Wiener processes.
For this, see first that

E
((
Cε
√
ε|σẆ ε

t−ε +m| − σ
)
Ws

)
= E

((
Cε
√
ε|σẆ ε

t−ε +m| − σ
)(
Wt∧s −W(t−ε)∧s

))
.

13



Now ∣∣E(Y εt Ws)
∣∣ =

∣∣∣ 1
D
√
ε

∫ t

0

E
((
Cε
√
ε|σẆ ε

r−ε +m| − σ
)
Ws

)
dr
∣∣∣

=
∣∣∣ 1
D
√
ε

∫ s∧t

(s−ε)∧t
E
((
Cε
√
ε|σẆ ε

r +m| − σ
)
Ws

)
dr
∣∣∣

≤ ε

D
√
ε

(
E
(
Cε
√
ε|σẆ ε

t−ε +m| − σ
)2
E(Wt −Wt−ε)2

)1/2

= (const)ε.

This means that E(Y εt Ws) → 0 (ε → 0), and, as it is direct to obtain that
{Y εt Ws}ε>0 is uniformly integrable, we obtain (34). As a consequence, since the
jump part is independent from the continous part in our Lévy process, we have
the weak convergence

(Y ε,W, S)⇒ (DB,W,S)

where B is independent of X.
Let us finally see (20). Observe that for each ε > 0, a.s. the process Y ε has

locally finite variation. Applying Ito’s formula:

1√
ε

∫ T

0

(
Cε
√
ε|σẆ ε

t +m| − σ
)
f(Xt)dt =

∫ T

0

f(Xt)dY εt

= f(XT )Y εT −
∫ T

0

Y εt df(Xt), (35)

where using the hypothesis that f is C2 it follows that {f(Xt)} is a semimartin-
gale. The process (Y ε, X) is adapted, and weakly converges to (B,X).

As the integrator in the right hand member of (35) is fixed one can verify
that the hypotheses of Theorem 2.2 in Kurtz and Protter (1991, see Remark
2.5) hold true, thus obtaining

f(XT )Y εT −
∫ T

0

Y εt df(Xt)⇒ f(XT )BT −
∫ T

0

Btdf(Xt)

Now, we apply Ito’s formula, taking into account that the quadratic covariation
[X,B] = 0 and we get

f(XT )BT −
∫ T

0

Btdf(Xt) =
∫ T

0

f(Xt)dBt,

completing the proof of (20).
To finish, we state and prove the proposition announced in Remark 3 after

the statement of Theorem 1.
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Proposition 3 Assume that X = {Xt : t ≥ 0} and f satisfy the hypothesis of
Theorem 1. Then, for the processes defined in (15) and (14), for each t ≥ 0,
almost surely

Lε(f, t)→ L0(f, t),

as ε→ 0.

Proof. On account of (22) it suffices to show that for fixed a > 0, almost
surely

C0

∫ t

0

f(Xa,ε
s )|Ṡa,εs |ds→ La0(f, t), (36)

as ε → 0, where La0(f, t) is obtained from (15) when the process X is replaced
by Xa.

Using the same notations as in the last part of Proof of Step 1 in Theorem
1, we can write a.s., for ε sufficiently small∫ t

0

f(Xa,ε
s )|Ṡa,εs |ds =

Nt∑
n=1

∫ τn+ε

τn−ε
f(Xa,ε

s )|Ṡa,εs |ds. (37)

Observe that for τn − ε < s < τn + ε one has

Ṡa,εs =
1
ε
ψ
(s− τn

ε

)
∆Xτn

so that∫ τn+ε

τn−ε
f(Xa,ε

s )|Ṡa,εs |ds =
1
ε

∫ τn+ε

τn−ε
f(Xa,ε

s )ψ
(s− τn

ε

)
|∆Xτn | ds.

Making the change of variables z = (s− τn)/ε in each integral, we obtain∫ t

0

f(Xa,ε
s )|Ṡa,εs |ds =

Nt∑
n=1

|∆Xτn |
∫ 1

−1

f
(
Xa,ε
τn+εz

)
ψ(z)dz.

To compute the limit as ε → 0 in the right hand member of the last equality,
use that

Xa,ε
τn+εz → Xa

τn

∫ z

−1

ψ(w)dw +Xa
τn−

∫ 1

z

ψ(w)dw.

This proves the statement.
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