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Jean-Marc Azäıs ∗, azais@cict.fr

Mario Wschebor †, wschebor@cmat.edu.uy

August 20, 2004

Abstract

We give a new proof of a theorem of Shub & Smale [9] on the
expectation of the number of roots of a system of m random polyno-
mial equations in m real variables, having a special isotropic Gaussian
distribution. Further, we present a certain number of extensions, in-
cluding the behaviour as m → +∞ of the variance of the number of
roots, when the system of equations is also stationary.
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1 Introduction

Let us consider m polynomials in m variables with real coefficients
Xi(t) = Xi(t1, ..., tm), i = 1, ..., m.
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We use the notation

Xi(t) :=
∑

‖j‖≤di

a
(i)
j tj, (1)

where j := (j1, ..., jm) is a multi-index of non-negative integers, ‖j‖ := j1 +

... + jm, j! := j1!...jm!, tj := tj11 ....tjm
m , a

(i)
j := a

(i)
j1...,jm

. The degree of the i-th
polynomial is di and we assume that di ≥ 1 ∀i.

Let NX(V ) be the number of roots lying in the subset V of R
m, of the

system of equations
Xi(t) = 0, i = 1, ..., m. (2)

We will assume throughout that V is a Borel set with the regularity property
that its boundary has zero Lebesgue measure. We denote NX = NX(Rm).

We will be interested in random real-valued functions Xi (i = 1, ...m), in
which case we will call ”random fields” the Xi’s, as well as the Rm-valued
random function X(t) = (X1(t), ..., Xm(t))T , t ∈ Rm. Whenever the Xi’s are
polynomials we will say that the Xi’s and X are ”polynomial random fields”.

Generally speaking, little is known on the distribution of NX(V ), even
for simple choices of the law on the coefficients. In the case of one equation
in one variable, a certain number of results have been known since a long
time, starting with the work of Marc Kac [6]. See for example the book by
Bharucha-Reid & Sambandham [2]

Shub & Smale [9] computed the expectation of NX when the coefficients
are Gaussian, centered independent random variables with certain specified
variances (see Theorem 3 below and also the book by Blum et al. [3]).
Extensions of their work, including new results for one polynomial in one
variable, can be found in the review paper by Edelman & Kostlan [5], see
also Kostlan [7].

The primary aim of the present paper is to give a new proof of Shub
& Smale’s Theorem, based upon the so-called Rice formula to compute the
moments of the number of roots of random fields. At the same time, this
permits certain extensions (some of which are already present in the cited
papers by Edelman & Kostlan) to classes of Gaussian polynomials not con-
sidered before, and for which some new behaviour of the number of roots can
be observed.

Additionally, in Section 6 we consider non-polynomial systems such that
the lines are independent and the law of each line is centered Gaussian,
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invariant under isometries as well as translations. Under general conditions,
we are able to estimate a lower bound for the variance of the number of roots
and show that for very general sets, the ratio of the standard deviation over
the mean tends to infinity as the number m of variables tends to infinity.

2 Rice formulae

In this section we give a brief account without proofs of Rice formulae, con-
tained in the statements of the following two theorems (Azäıs and Wschebor,
[1]).

Theorem 1 Let V be a compact subset of Rm, Z : V → Rm be a random
field and u ∈ R

m be a fixed point.
Assume that:
1) Z is Gaussian,
2) x Z(x) is a.s. of class C1,
3) for each x ∈ V , Z(x) has a non degenerate distribution and denote by

pZ(x) its density.

4) P{∃x ∈ V̇ , Z(x) = u, det
(

Z ′(x)
)

= 0} = 0. Here, V̇ is the interior of
V and Z ′ denotes the derivative of the field Z(.).

5) λm(∂V ) = 0, where ∂V is the boundary of V and λm is the Lebesgue
measure on R

m (we will also use dx instead of λm(dx)). Then, denoting
NZ

u (V ) := ]{x ∈ V : Z(x) = u}, one has

E
(

NZ
u (V )

)

=

∫

I

E (| det(Z ′(x))|/Z(x) = u) pZ(x)(u)dx, (3)

and both members are finite. E(X/.) denotes conditional expectation.

Theorem 2 Let k, k ≥ 2 be an integer. Assume the same hypotheses as in
Theorem 1 excepting for 3) that is replaced by the stronger one:

3’) for x1, ..., xk ∈ V pairwise different values of the parameter, the distri-
bution of the random vector

(

Z(x1), ..., Z(xk)
)

does not degenerate in (Rm)k
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and we denote by pZ(x1),...,Z(xk) its density. Then

E
[(

NZ
u (V )

)(

NZ
u (V )− 1

)

...
(

NZ
u (V )− k + 1

)]

=

∫

V k

E

(

k
∏

j=1

| det
(

Z ′(xj)
)

|/Z(x1) = ... = Z(xk) = u

)

pZ(x1),...,Z(xk)(u, ..., u)dx1...dxk, (4)

where both members may be infinite.

If one wants to prove Theorem 1, a direct approach is as follows. Assume
that u is not a critical value of Z (This holds true with probability 1 under
the hypotheses of Theorem 1). Put n := NZ

u (V ). Since V is compact, n is
finite, and if n 6= 0, let x(1), ..., x(n) be the roots of Z(x) = u belonging to
V . One can prove that almost surely x(i) /∈ ∂V for all i = 1, ..., n. Hence,
applying the inverse function theorem, if δ is small enough, one can find in
V open neighborhoods U1, ..., Un of x(1)..., x(n) respectively so that:

1. Z is a C1 diffeomorphism Ui → Bm(u, δ), the open ball centered in u
with radius δ, for each i = 1, ..., n.

2. U1, ..., Un are pairwise disjoint,

3. if x /∈
⋃n

i=1 Ui, then Z(x) /∈ Bm(u, δ).

Using the change of variable formula, we have:

∫

V

| det
(

Z ′(x)
)

|1I{‖Z(x)−u‖<δ}dx =

i=1
∑

n

∫

Ui

| det
(

Z ′(x)
)

|dx = λm(Bm(u, δ))n.

Hence,

NZ
u (V ) = n = lim

δ↓0

1

λm(Bm(u, δ))

∫

V

| det
(

Z ′(x)
)

|1I{‖Z(x)−u‖<δ}dx. (5)

If n = 0, (5) is obvious. Now an informal computation of E(NZ
u (V )) can be

performed in the following way:

E
(

NZ
u (V )

)

= lim
δ↓0

∫

V

dx
1

λm(Bm(u, δ))

∫

Bm(u,δ)

E
(

| det
(

Z ′(x)
)

|/Z(x) = y
)

pZ(x)(y)dy

=

∫

V

E
(

| det
(

Z ′(x)
)

|/Z(x) = u
)

pZ(x)(u)dx. (6)
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Instead of formally justifying these equalities, the proof in Azäıs and
Wschebor [1] goes in fact through a different path. The proof of Theorem 2
is similar.

For Gaussian fields , an essential simplification in the application of The-
orem 1 comes from the fact that, in this case orthogonality implies inde-
pendence and this is helpful to simplify the conditional expectation in the
integrand.

3 Main results

We begin with the statement of Shub & Smale’s Theorem.

Theorem 3 ([9]) Let

Xi(t) =
∑

‖j‖≤di

a
(i)
j tj, i = 1, ..., m

Assume that the real-valued random variables a
(i)
j are independent Gaussian

centered, and

V ar
(

a
(i)
j

)

=

(

di

j1.....jm

)

=
di!

j1!...jm!(di −
∑h=m

h=1 jh)!
.

Then,
E
(

NX
)

=
√

d (7)

where d = d1...dm is the Bézout-number of the polynomial system X(t).

A direct computation shows that under the Shub & Smale hypothesis, the
Xi’s are centered independent Gaussian fields, and the covariance function
of Xi is given by

rXi(s, t) = E (Xi(s)Xi(t)) = (1 + 〈s, t〉)di,

where 〈s, t〉 denotes the usual scalar product in R
m.

More generally, assume that we only require that the polynomials random
fields Xi are independent and that their covariances rXi(s, t) are invariant
under isometries of R

m, i.e. rXi(Us, Ut) = rXi(s, t) for any isometry U and

any pair (s, t). This implies in particular that the coefficients a
(i)
j remain
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independent for different i’s but can be now correlated from one j to another
for the same value of i. It is easy to check that this implies that for each
i = 1, ...m, the covariance rXi(s, t) is a function of the triple (〈s, t〉, ‖s‖2, ‖t‖2)
(‖.‖ is Euclidean norm in R

m). It can also be proved (Spivak [10]) that this
function is in fact a polynomial with real coefficients, say Q(i)

rXi(s, t) = Q(i)(〈s, t〉, ‖s‖2, ‖t‖2), (8)

satisfying the symmetry condition

Q(i)(u, v, w) = Q(i)(u, w, v) (9)

A simple way to construct a class of covariances of this type is to take

Q(i)(u, v, w) = P (u, vw) (10)

where P is a polynomial in two variables with non-negative coefficients. In
fact, consider the two functions defined on R

m×R
m by means of (s, t) 〈s, t〉

and (s, t) ‖s‖2 ‖t‖2. It is easy to see that both are covariances of polyno-
mial random fields. On the other hand, the set of covariances of polynomial
random fields is closed under linear combinations with non-negative coeffi-
cients as well as under multiplication, so that P (〈s, t〉, ‖s‖2 ‖t‖2) is also the
covariance of some polynomial random field.

One can check that using this recipe one cannot construct all the pos-
sible covariances of polynomial random fields. For example, the following
polynomial is a covariance (of some polynomial random field).

r(s, t) = 1 +
m + 1

m
〈s, t〉2 − 1

m
(‖s‖2‖t‖2).

but, if m ≥ 2, it can not be obtained from the construction of (10).
The situation becomes simpler if one considers only functions of the scalar

product, i.e.

Q(i)(u, v, w) =

di
∑

k=0

ck uk.

In this case, it is known that the necessary and sufficient condition for it
to be a covariance is that ck ≥ 0 ∀k = 0, 1, ..., di. [Shub & Smale corresponds
to the choice ck =

(

di

k

)

]. Here is a simple proof of this fact using the method
of Box & Hunter [4]. The covariance of the random field

X(t) =
∑

‖j‖≤d

aj tj, t ∈ R
m
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having the form (1), where the random variables aj are centered and in L2

is given by

E (X(s)X(t)) =
∑

‖j‖≤d,‖j′‖≤d

γj,j′s
jtj

′

(11)

where γj,j′ := E(ajaj′). If
∑d

k=0 ck 〈s, t〉k is the covariance of a polynomial
random field as in (11), one can write:

∑

‖j‖≤d,‖j′‖≤d

γj,j′s
jtj

′

=
d
∑

k=0

ck

∑

‖j‖=k

k!

j!
(s1t1)

j1 ... (smtm)jm =
∑

‖j‖≤d

c‖j‖
‖j‖!
j!

sjtj

Identifying coefficients, it follows that γj,j′ = 0 if j 6= j ′ and for each k =
0, 1, ..., d,

ck =
j!

k!
γj,j (12)

whenever ‖j‖ = k. This shows that ck ≥ 0 since γj,j is the variance of the
random variable aj. Reciprocally, if all the ck re positive, defining γj,j by

means of (12) and setting γi,j = 0 for i 6= j shows that
∑d

k=0 ck 〈s, t〉k is the
covariance of a polynomial random field.

Notice that the foregoing argument shows at the same time that if the
polynomial random field {X(t) : t ∈ R

m} is Gaussian and has
∑di

k=0 ck 〈s, t〉k
as covariance function, then its coefficients are independent random variables.
A description of the homogeneous polynomial covariances that are invariant
under isometries has been given by Kostlan [7], part II.

We now state an extension of the Shub & Smale theorem, valid under
more general conditions.

Theorem 4 Assume that the Xi are independent centered Gaussian poly-
nomial random fields with covariances rXi(s, t) = Q(i)(〈s, t〉, ‖s‖2, ‖t‖2) (i =
1, ..., m).

Let us denote by Q
(i)
u , Q

(i)
w , Q

(i)
uv, ... the partial derivatives of Q(i) and set

qi(x) :=
Q

(i)
u

Q(i)

ri(x) :=
Q(i)

(

Q
(i)
uu + 2Q

(i)
uv + 2Q

(i)
uw + 4Q

(i)
vw

)

−
(

Q
(i)
u + Q

(i)
v + Q

(i)
w

)2

(Q(i))2
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where the functions in the right-hand sides are always computed at the triplet
(x, x, x).

Put:

hi(x) := 1 + x
ri(x)

qi(x)
.

Then for all Borel sets V with boundary having zero Lebesgue measure, we
have

E
(

NX(V )
)

= (2π)−m/2Lm−1

∫

V

(

m
∏

i=1

qi(‖t‖2)
)1/2

Eh(‖t‖2)dt. (13)

Here

Eh(x) := E
(

(

m
∑

i=1

hi(x)ξ2
i )

1/2
)

where ξ1, ..., ξm are i.i.d. standard normal in R and

Ln :=

n
∏

j=1

Kj

with Kj = E(‖ηj‖) with ηj standard normal in R
j.

Elementary computations give the identities:

Km =
√

2
Γ((m + 1)/2)

Γ(m/2)

Lm =
1√
2π

2
m+1

2 Γ(
m + 1

2
).

We define the integral

Jm :=

∫ +∞

0

ρm−1

(1 + ρ2)(m+1)/2
dρ =

√

π/2
1

Km

that will appear later on. We need also the surface area σm−1 of the unit

sphere Sm−1 in R
m, σm−1 = 2πm/2

Γ(m/2)
.

Remark on formula (13). Note that formula (13) takes simpler forms
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in some special cases. For example, when the functions hi(x) do not depend
on i, denoting by h(x) their common value, we have

Eh(x) =
√

h(x)Km.

Under the hypothesis that Q(i)(u, v, w) = Qdi(u), we have

qi(x) = diq(x) = di
Q′(x)
Q(x)

, hi(x) = h(x) = 1− xQ′2(x)−Q(x)Q′′(x)
Q(x)Q′(x)

. Then, for the
expectation of the total number of roots i.e. in case V = R

m, using polar
coordinates, we get from the last theorem the formula:

E(NX) = (2π)−m/2
√

d1...dmLmσm−1

∫ ∞

0

ρm−1q(ρ2)m/2
√

h(ρ2)dρ

=
√

2/πKm

√

d1...dm

∫ ∞

0

ρm−1q(ρ2)m/2
√

h(ρ2)dρ. (14)

4 Proof of Theorem 4

Consider the normalized Gaussian fields

Zi(t) :=
Xi(t)

(

Q(i)(‖t‖2, ‖t‖2, ‖t‖2)
)1/2

which have variance 1. Denote Z(t) = (Z1(t) , ..., Zm(t))T . Applying Rice
Formula for the expectation of the number of zeros of Z (Theorem 1):

E
(

NX(V )
)

= E
(

NZ(V )
)

=

∫

V

E (|det(Z ′(t)| /Z(t) = 0)
1

(2π)
m
2

dt,

where Z ′(t) := [Z ′
1(t)

...
...
... Z ′

m(t)] is the matrix obtained by concatenation of
the vectors Z ′

1(t), ..., Z
′
m(t). Note that since E (Z2

i (t)) is constant, it follows
that E

(

Zi(t)
∂Zi

∂tj
(t)
)

= 0 for all i, j = 1, ..., m. Since the field is Gaussian this

implies that Zi(t) and Z ′
i(t) are independent and given that the coordinate

fields Z1, ...Zm are independent, one can conclude that for each t, Z(t) and
Z ′(t) are independent. So

E
(

NX(V )
)

= E
(

NZ(V )
)

=
1

(2π)
m
2

∫

V

E (|det(Z ′(t)|) dt. (15)
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A straightforward computation shows that the (α, β)- entry, α, β = 1, ..., m,
in the covariance matrix of Z ′

i(t) is

E

(

∂Zi

∂tα
(t)

∂Zi

∂tβ
(t)

)

=
∂2

∂sα∂tβ
rZi(s, t) |s=t= ri(‖t‖2)tαtβ + qi(‖t‖2)δαβ,

where δα,β denotes the Kronecker symbol. This can be rewritten as

Var
(

Z ′
i(t)
)

= qiIm + ritt
T ,

where the functions in the right-hand side are to be computed at the point
‖t‖2. Let U be the orthogonal transformation of R

m that gives the coordi-
nates in a basis with first vector t

‖t‖
, we get

Var
(

UZ ′
i(t)
)

= Diag
(

(ri.‖t‖2 + qi), qi, ..., qi

)

so that

Var
(UZ ′

i(t)√
qi

)

= Diag
(

hi, 1, ..., 1
)

Put now

Ti :=
UZ ′

i(t)√
qi

and set

T := [T1
...
...
... Tm]

We have

| det
(

Z ′(t)
)

| = | det
(

T
)

|
m
∏

i=1

q
1/2
i . (16)

Now, we write

T =













W1

· · ·
· · ·
· · ·
Wm













,

where the Wi are random row vectors. Because of the properties of indepen-
dence of all the entries of T , we know that :

• W2, ..., Wm are independent standard Gaussian vectors in R
m
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• W1 is independent from the other Wi, i ≥ 2, with distribution
N
(

0, Diag(h1, ..., hm)
)

Now E
(

| det(T )|
)

is calculated as the expectation of the volume of the
parallelotope generated by W1, ..., Wm in R

m. That is,

| det(T )| = ‖W1‖
m
∏

j=2

d(Wj, Sj−1),

where Sj−1 denotes the subspace of R
m generated by W1, ..., Wj−1 and d de-

notes the Euclidean distance. Using the invariance under isometries of the
standard normal distribution of R

m we know that, conditioning on W1, ..., Wj−1,
the projection PS⊥j−1

(Wj) of Wj on the orthogonal S⊥
j−1 of Sj−1 has a distri-

bution which is standard normal on the space S⊥
j−1 which is of dimension

m− j + 1 with probability 1. Thus E
(

d(Wj, Sj−1)/W1, ..., Wj−1

)

= Km−j+1.
By successive conditionings on W1, W1, W2 etc... , we get:

E
(

| det(T )|
)

= E
(

(
m
∑

i=1

hi(x)ξ2
i )

1/2
)

×
m−1
∏

j=1

Kj,

where ξ1, ..., ξm are i.i.d. standard normal in R. Using (16) and (15) we
obtain (13) . �

5 Examples

5.1 Shub & Smale

In this case we have Q(i) = Qdi with Q(u, v, w) = 1 + u. We get

h(x) = q(x) =
1

1 + x
,

and (7) follows from formula (14).

A simple variant of Shub & Smale theorem corresponds to taking Q(i)(u) =
1 + ud for all i = 1, ..., m (here all the Xi’s have the same law), which yields

q(x) = qi(x) =
dud−1

1 + ud
; h(x) = hi(x) =

d

1 + ud
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E(NX) =

√

2

π
Km

∫ +∞

0

ρmd−1

(1 + ρ2d)(m+1)/2
dρ = d(m−1)/2

which differs by a constant factor from the analogous Shub & Smale result
for (1 + u)d which is dm/2.

5.2 Linear systems with a quadratic perturbation

Consider linear systems with a quadratic perturbation

Xi(s) = ξi+ < ηi, s > +ζi‖s‖2,

where the ξi, ζi, ηi, i = 1, ..., m are independent and standard normal in R, R
and R

m respectively. This corresponds to the covariance
rXi(s, t) = 1 + 〈s, t〉+ ‖s‖2‖t‖2.

If there is no quadratic perturbation, it is obvious that the number of
roots is almost surely equal to 1.

For the perturbed system, applying Theorem 4 and performing the com-
putations required in this case, we obtain:

q(x) =
1

1 + x + x2
; r(x) =

4

1 + x + x2
− (1 + 2x)2

(1 + x + x2)2
; h(x) =

1 + 4x + x2

1 + x + x2

and

E(NX) =
Hm

Jm
with Hm =

∫ +∞

0

ρm−1(1 + 4ρ2 + ρ4)
1

2

(1 + ρ2 + ρ4)
m
2

+1
dρ.

An elementary computation shows that E(NX) = o(1) as m → +∞ (see the
next example for a more precise behavior). In other words, the probability
that the perturbed system has no solution tends to 1 as m → +∞.

5.3 More general perturbed systems

Let us consider the covariances given by the polynomials

Qi(u, v, w) = Q(u, v, w) = 1 + 2ud + (vw)d.

This corresponds to adding a perturbation depending on the product of the
norms of s, t to the modified Shub & Smale systems considered in our first
example. We know that for the unperturbed system, one has E(NX) =
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d
m−1

2 . Note that the factor 2 in Q has only been added for computational
convenience and does not modify the random variable NX of the unperturbed
system. For the perturbed system, we get

q(x) =
2dxd−1

(1 + xd)2
; r(x) =

2d(d− 1)xd−2

(1 + xd)2
; h(x) = d.

Therefore,

E(NX) =

√

2

π
Km

∫ +∞

0

ρm−1

(

2dρ2(d−1)

(1 + ρ2d)2

)

m
2 √

d dρ

=

√

2

π
Km2m/2d

m+1

2

∫ +∞

0

ρmd−1

(1 + ρ2d)m
dρ. (17)

The integral can be evaluated by an elementary computation and we obtain

E(NX) = 2−
m−2

2 d
m−1

2 ,

which shows that the mean number of zeros is reduced by the perturbation
at a geometrical rate as m grows.

5.4 Polynomial in the scalar product, real roots

Consider again the case in which the polynomials Q(i)are all equal and the
covariances depend only on the scalar product, i.e. Q(i)(u, v, w) = Q(u). We
assume further that the roots of Q, that we denote −α1, ...,−αd, are real
(0 < α1 ≤ .... ≤ αd). We get

q(x) =

d
∑

h=1

1

x + αh
; r(x) =

d
∑

h=1

1

(x + αh)2
; h(x) =

1

qi(x)

d
∑

h=1

αh

(x + αh)2
.

It is easy now to write an upper bound for the integrand in (13) and compute
the remaining integral, thus obtaining the inequality

E(NX) ≤
√

αd

α1
dm/2,

which is sharp if α1 = ... = αd.
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If we further assume that d = 2, with no loss of generality Q(u) has the
form Q(u) = (u + 1)(u + α) with α ∈ [0, 1]. Replacing q by 1

x+1
+ 1

x+α
in

formula (14) we get:

E(NX) =
√

2/πKm (18)
∫ ∞

0

ρm−1
( 1

1 + ρ2
+

1

α + ρ2

)(m−1)/2( 1

(1 + ρ2)2
+

α

(α + ρ2)2

)1/2
dρ.

One can compute the limit of the right-hand side as α → 0. For this purpose,
notice that the function α → α

(α+ρ2)2
attains its maximum at α = ρ2 and is

dominated by 1
4ρ2 . We divide the integral in the right-hand member of (18)

into two parts, setting for some δ > 0

Iδ,α :=

∫ δ

0

ρm−1
( 1

1 + ρ2
+

1

α + ρ2

)(m−1)/2( 1

(1 + ρ2)2
+

α

(α + ρ2)2

)1/2
dρ,

and

Jδ,α :=

∫ +∞

δ

ρm−1
( 1

1 + ρ2
+

1

α + ρ2

)(m−1)/2( 1

(1 + ρ2)2
+

α

(α + xρ2)2

)1/2
dρ.

By dominated convergence,

Jδ,α →
∫ +∞

δ

(2ρ2 + 1

ρ2 + 1

)(m−1)/2 dρ

1 + ρ2
,

as α → 0. On the other hand

I−δ,α ≤ Iδ,α ≤ I+
δ,α

where

I−δ,α :=

∫ δ

0

( ρ2

1 + ρ2
+

ρ2

α + ρ2

)(m−1)/2
√

α

ρ2 + α
dρ

=

∫ δ/α

0

( αz2

1 + αz2
+

αz2

α(z2 + 1)

)(m−1)/2 dz

z2 + 1
→ Jm, (19)

as α → 0, and

I+
δ,α :=

∫ δ

0

( ρ2

1 + ρ2
+

ρ2

α + ρ2

)(m−1)/2( 1

1 + ρ2
+

√
α

ρ2 + α

)

dρ

→
∫ δ

0

(2ρ2 + 1

ρ2 + 1

)(m−1)/2 dρ

1 + ρ2
+ Jm, (20)
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as α → 0. Since δ is arbitrary, the integral in the right-hand size of (20) can
be chosen arbitrarily small. Using the identity KmJm =

√

π/2, we get

E(NX) → υ := 1 +
1

Jm

∫ +∞

0

(2ρ2 + 1

ρ2 + 1

)(m−1)/2 dρ

1 + ρ2

as α → 0. Since 2ρ2

ρ2+1
< 2ρ2+1

ρ2+1
< 2:

1 + 2(m−1)/2 < υ < 1 +
2(m−1)/2

Jm

π

2
.

5.5 An analytic example

Our main result can be extended to random analytic functions in an obvious
manner.

Consider the case

Q(i)(u, v, w) = exp
(

di(u + βvw)
)

; di > 0, β ≥ 0. (21)

The case di = 1 ∀i = 1, ..., m, β = 0 has been treated by Edelman & Kostlan
[5]. We have E(NX) = +∞ but it is possible to get a closed expression for
E
(

NX(V )
)

. We have

qi(x) = di ; r(x) = 4diβ ; h(x) = 1 + 4βx.

Hence

E
(

NX(V )
)

=

∫

V

gm(t)dt,

with

gm(t) =
Γ(m + 1)

Γ(m/2 + 1)

1

(4π)m/2

√

d1...dm(1+4β‖t‖2)1/2 =
Lm

(2π)m/2

√

d1...dm(1+4β‖t‖2)1/2.

Notice that if β = 0, the integrand is constant.

6 Systems of equations having a probability

law invariant under isometries and transla-

tions

In this section we assume that Xi : R
m → R, i = 1, ...m are independent

Gaussian centered random fields with covariance of the form
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rXi(s, t) = γi(‖t− s‖2), (i = 1, ...m). (22)

We will assume that γi is of class C2 and, with no loss of generality, that
γi(0) = 1.

In what follows, V is a Borel subset of R
m with positive Lebesgue measure

and the regularity property that its boundary has zero Lebesgue measure.
For the computation of the expectation of the number of roots of the system
of equations

Xi(t) = 0, (i = 1, ...m)

that belong to the set V , we may use the same procedure as in Theorem 4,
obtaining:

E
(

NX(V )
)

= (2π)−m/2E
(

| det(X ′(0))|
)

λm(V ) (23)

where we have used that the law of the random field {X(t) : t ∈ R
m} is

invariant under translation and that X(t) and X ′(t) are independent. One
easily computes, for i, α, β = 1, ..., m

E

(

∂Xi

∂tα
(0)

∂Xi

∂tβ
(0)

)

=
∂2rXi

∂sα∂tβ

∣

∣

∣

∣

t=s

= −2γ′i(0)δαβ,

which implies, again using the same method as in the proof of Theorem 4 :

E
(

| det(X ′(0))|
)

= 2m/2Lm

m
∏

i=1

|γ′i(0)|1/2

and replacing in (23)

E
(

NX(V )
)

= π−m/2

[ m
∏

i=1

|γ′i(0)|1/2

]

Lmλm(V ). (24)

Our next task is to give a formula for the variance of NX(V ) and use it to
prove that -under certain additional conditions - the variance of

nX(V ) =
NX(V )

E
(

NX(V )
)

- which has obviously mean value equal to 1- grows exponentially when the
dimension m tends to infinity. In other words, one should expect to have large
fluctuations of nX(V ) around its mean for systems having large m. Moreover
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this exponential growth implies that an exact expression of the variance
would not improve bounds on the probabilities of the kind P{NX(V ) > A}
that follow from (24) and the Markov inequality.

Our additional requirements are the following:

1) All the γi coincide : rXi(s, t) = r(s, t) = γi(‖t − s‖2) = γ(‖t − s‖2),
i = 1, ..., m,

2) the function γ is such that (s, t)  γ(‖t − s‖2) is a covariance for all
dimensions m.

It is well known [8] that γ satisfies 2) and γ(0) = 1 if and only if there exists
a probability measure G on [0, +∞) such that

γ(x) =

∫ +∞

0

e−xwG(dw) for all x ≥ 0. (25)

Theorem 5 Let rXi(s, t) = γ(‖t − s‖2) for i = 1, ..., m where γ is of the
form (25). We assume further that

1. G is not concentrated at a single point and

∫ +∞

0

x2G(dx) < ∞.

2. {Vm}m=1,2... is a sequence of Borel sets, Vm ⊂ R
m, λm(∂Vm) = 0 and

there exist two positive constants δ, ∆ such that for each m, Vm contains
a ball with radius δ and is contained in a ball with radius ∆.

Then,
Var
(

nX(Vm)
)

→ +∞, (26)

exponentially fast as m → +∞.

Proof: To compute the variance of NX(V ) note first that

Var
(

NX(V )
)

= E
(

NX(V )
(

NX(V )− 1
)

)

+ E
(

NX(V )
)

−
[

E
(

NX(V )
)]2

, (27)
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so that to prove (26), it suffices to show that

E
(

NX(V )
(

NX(V )− 1
)

)

[

E
(

NX(V )
)]2 → +∞ (28)

exponentially fast as m → +∞. The denominator in (28) is given by formula
(24). For the numerator, we can apply Theorem 2 with k = 2 to obtain:

E
(

NX(V )
(

NX(V )− 1
) )

=

∫∫

V×V

E
(

|det(X ′(s)) det(X ′(t))| /X(s) = X(t) = 0
)

pX(s),X(t)(0, 0) ds dt,

(29)

where pX(s),X(t)(., .) denotes the joint density of the random vectors X(s), X(t).
Next we compute the ingredients of the integrand in (29). Because of

invariance under translations, the integrand is a function of τ = t − s. We
denote with τ1, ..., τm the coordinates of τ .

The Gaussian density is immediate:

pX(s),X(t)(0, 0) =
1

(2π)m

1

[1− γ2(‖τ‖2)]m/2
. (30)

Let us turn to the conditional expectation in (29). We put

E
(

|det(X ′(s)) det(X ′(t))| /X(s) = X(t) = 0
)

= E
(
∣

∣det(As) det(At)
∣

∣

)

,

where As = ((As
iα)), At = ((At

iα)) are m×m random matrices having as joint
- Gaussian - distribution the conditional distribution of the pair X ′(s), X ′(t)
given that X(s) = X(t) = 0. So, to describe this joint distribution we must
compute the conditional covariances of the elements of the matrices X ′(s)
and X ′(t) given the condition C : {X(s) = X(t) = 0}. This is easily done
using standard regression formulae:

E

(

∂Xi

∂sα
(s)

∂Xi

∂sβ
(s)/C

)

=
∂2r

∂sα∂tβ

∣

∣

∣

∣

t=s

− 1

1− (r(s, t))2

∂r

∂sα
(s, t)

∂r

∂sβ
(s, t)

E

(

∂Xi

∂sα
(s)

∂Xi

∂tβ
(t)/C

)

=
∂2r

∂sα∂tβ
(s, t)+

1

1− (r(s, t))2

∂r

∂sα
(s, t)

∂r

∂tβ
(s, t)r(s, t).

Replacing in our case, we obtain
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E
(

As
iαAs

iβ

)

= E
(

At
iαAt

iβ

)

= −2γ′(0)δαβ − 4
γ′2τατβ

1− γ2
, (31)

E
(

As
iαAt

iβ

)

= −4γ′′τατβ − 2γ′δαβ − 4
γγ′2τατβ

1− γ2
, (32)

and for every i 6= j:

E
(

As
iαAs

jβ

)

= E
(

At
iαAt

jβ

)

= E
(

As
iαAt

jβ

)

= 0,

where γ = γ(‖τ 2‖), γ′ = γ′(‖τ 2‖), γ′′ = γ′′(‖τ 2‖).
Take now an orthonormal basis of R

m having the unit vector τ
‖τ‖

as first

element. Then the variance (2m)×(2m) matrix of the pair As
i , A

t
i - the i−th

rows of As and At respectively - takes the following form:

T =



























U0 · · · . . | U1 · · · . .
. V0 · · · . | . V1 · · · .

. .
. . . . | . .

. . . .
. . · · · V0 | . . · · · V1

U1 · · · . . | U0 · · · . .
. V1 · · · . | . V0 · · · .

. .
. . . . | . .

. . . .
. . · · · V1 | . . · · · V0



























,

where

U0 = U0(‖τ‖2) = −2γ′(0)− 4
γ′2 ‖τ‖2

1− γ2
;

V0 = −2γ′(0) ;

U1 = U1(‖τ‖2) = −4γ′′ ‖τ‖2 − 2γ′ − 4
γγ′2‖τ‖2

1− γ2
;

V1 = V1(‖τ‖2) = −2γ′;

and there are zeros outside the diagonals of each one of the four blocks. Let
us perform a second regression of At

iα on As
iα, that is, write the orthogonal

decompositions
At

iα = Bt,s
iα + CαAs

iα (i, α = 1, m),
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where Bt,s
iα is centered Gaussian independent of the matrix As, and

For α = 1, C1 =
U1

U0

, Var(Bt,s
i1 ) = U0

(

1− U2
1

U2
0

)

;

For α > 1, Cα =
V1

V0
, Var(Bt,s

iα ) = V0

(

1− V 2
1

V 2
0

)

.

Conditioning we have :

E
(

| det(As)|| det(At)|
)

= E
[

| det(As)|E
(

| det((Bt,s
iα + CαAs

iα)i,α=1,..,m)|/As
)]

with obvious notations. For the inner conditional expectation, we can pro-
ceed in the same way as we did in the proof of Theorem 4 to compute the
determinant, obtaining a product of expectations of Euclidean norms of non-
centered Gaussian vectors in R

k for k = 1, ..., m. Now we use the well-known
inequality

E
(

‖ξ + v‖
)

≥ E
(

‖ξ‖
)

valid for ξ standard Gaussian in R
k and v any vector in R

k, and it follows
that

E
(

| det(As)|| det(At)|
)

≥ E
(

| det(As)|
)

E
(

| det(Bt,s)|
)

.

Since the elements of As (resp. Bt,s) are independent, centered Gaussian
with known variance, we obtain:

E
∣

∣det(As) det(At)
∣

∣ ≥ U0V
m−1
0

(

1− U2
1

U2
0

)1/2(
1− V 2

1

V 2
0

)(m−1)/2
L2

m.

Going back to (28) and on account of (24) and (29) we have

E
(

NX(V )
(

NX(V )− 1
) )

E
(

NX(V )
)2 ≥

(

λm(V )
)−2
∫∫

V×V

dsdt

[

1− V 2
1 V −2

0

1− γ2

]m/2

H(‖τ‖2).

(33)
Let us put V = Vm in (33) and study the integrand in the right hand member.
The function

H(x) =

(

U2
0 (x)− U2

1 (x)

V 2
0 − V 2

1 (x)

)1/2

is continuous for x > 0. Let us show that it does not vanish if x > 0.
It is clear that U 2

1 ≤ U2
0 on applying the Cauchy-Schwarz inequality to

the pair of variables As
i1, A

t
i1. The equality holds if and only if the variables
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As
i1, A

t
i1 are linearly dependent. This would imply that the distribution - in

R
4 - of the random vector

ζ :=
(

X(s), X(t), ∂1X(s), ∂1X(t)
)

would degenerate for s 6= t (we have denoted ∂1 differentiation with respect
to the first coordinate). We will show that this is not possible. Notice first
that for each w > 0, the function

(s, t) e−‖t−s‖2w

is positive definite, hence the covariance of a centered Gaussian stationary
field defined on R

m, say {Zw(t) : t ∈ R
m} whose spectral measure has the

non-vanishing density:

fw(x) = (2π)−m/2(2w)−m/2 exp
(

− ‖x‖2

4w

)

(x ∈ R
m).

The field {Zw(t) : t ∈ R
m} satisfies the conditions of Proposition 3.1 of Azäıs

& Wschebor [1] so that the distribution of the 4-tuple

ζw :=
(

Zw(s), Zw(t), ∂1Z
w(s), ∂1Z

w(t)
)

does not degenerate for s 6= t. On account of (25) we have,

Var(ζ) =

∫ +∞

0

Var(ζw)G(dw),

where integration of the matrix is integration term by term. This implies
that the distribution of ζ does not degenerate for s 6= t and that H(x) > 0
for x > 0.

We now show that for τ 6= 0:

1− V 2
1 (‖τ‖2)V −2

0

1− γ2(‖τ‖2)
> 1

which is equivalent to

−γ′(x) < −γ′(0)γ(x) , ∀x > 0. (34)

The left-hand member of (34) can be written as

−γ′(x) =
1

2

∫∫ +∞

0

(

w1 exp(−xw1) + w2 exp(−xw2)
)

G(dw1)G(dw2)

21



and the right-hand member

−γ′(0)γ(x) =
1

2

∫∫ +∞

0

(

w1 exp(−xw2) + w2 exp(−xw1)
)

G(dw1)G(dw2),

so that

−γ′(0)γ(x)+γ′(x) =
1

2

∫∫ +∞

0

(w2−w1)
(

exp(−xw1)−exp(−xw2)
)

G(dw1)G(dw2),

which is ≥ 0 and is equal to zero only if G is concentrated at a point, which
is not the case. This proves (34). Now, using the hypotheses on the inner
and outer diameter of Vm, the result follows by a compactness argument. �.

Remark: On studying the behaviour of the function H(x) as well as the
ratio

1− V 2
1 (x)V −2

0

1− γ2(x)

at zero one can show that the result holds true if we let the radius δ of the
ball contained in Vm tend to zero not too fast as m → +∞.

Similarly, one can let ∆ tend to +∞ in a controlled way and use the same
calculations to get asymptotic lower bounds for the variance as m → +∞.
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