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Abstract

Let I be a compact d-dimensional manifold, X : I → R a Gaussian
process with regular paths and FI(u) , u ∈ R the probability distribution
function of supt∈I X(t).

We prove that under certain regularity and non-degeneracy conditions, FI

is a C1-function and satisfies a certain implicit equation that permits to give
bounds for its values and to compute its asymptotic behaviour as u → +∞.
This is a partial extension of previous results by the authors in the case d = 1.

Our methods use strongly the so-called Rice formulae for the moments of
the number of roots of an equation of the form Z(t) = x, where Z : I → Rd

is a random field and x a fixed point in Rd. We also give proofs for this kind
of formulae, which have their own interest beyond the present application.
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1 Introduction and notations.

Let I be a d-dimensional compact manifold and X : I →R a Gaussian process with
regular paths defined on some probability space (Ω,A, P). Define MI = sup

t∈I
X(t)

and FI(u) = P{MI ≤ u}, u ∈ R the probability distribution function of the random
variable MI . Our aim is to study the regularity of the function FI when d > 1.

There exist a certain number of general results on this subject, starting from
the papers by Ylvisaker (1968) and Tsirelson (1975) (see also Weber (1985), Lifshits
(1995), Diebolt and Posse (1996) and references therein). The main purpose of this
paper is to extend to d > 1 some of the results about the regularity of the function
u Ã FI(u) in Azäıs & Wschebor (2001), which concern the case d = 1.

Our main tool here is Rice Formula for the moments of the number of roots
NZ

u (I) of the equation Z(t) = u on the set I, where {Z(t) : t ∈ I} is an Rd-valued
Gaussian field, I is a subset of Rd and u a given point in Rd. For d > 1, even
though it has been used in various contexts, as far as the authors know, a full proof
of Rice Formula for the moments of NZ

u (I) seems to have only been published by R.
Adler (1981) for the first moment of the number of critical points of a real-valued
stationary Gaussian process with a d-dimensional parameter, and extended by Azäıs
and Delmas (2002) to the case of processes with constant variance. Cabaña (1985)
contains related formulae for random fields; see also the PHD thesis of Konakov
cited by Piterbarg (1996b). In the next section we give a more general result which
has an interest that goes beyond the application of the present paper. At the same
time the proof appears to be simpler than previous ones. We have also included
the proof of the formula for higher moments, which in fact follows easily from the
first moment. Both extend with no difficulties to certain classes of non-Gaussian
processes.

It should be pointed out that the validity of Rice Formula for Lebesgue-almost
every u ∈ Rd is easy to prove (Brillinger, 1972) but this is insufficient for a certain
number of standard applications. For example, assume X : I Ã R is a real-valued
random process and one is willing to compute the moments of the number of critical
points of X. Then, we must take for Z the random field Z(t) = X ′(t) and the
formula one needs is for the precise value u = 0 so that a formula for almost every
u does not solve the problem.

We have added Rice Formula for processes defined on smooth manifolds. Even
though Rice Formula is local, this is convenient for various applications. We will
need a formula of this sort to state and prove the implicit formulae for the derivatives
of the distribution of the maximum (see Section 3).
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The results on the differentiation of FI are partial extensions of Azäıs & Wsche-
bor (2001). Here, we have only considered the first derivative F ′

I(u). In fact one can
push our procedure one step more and prove the existence of F”I(u) as well as some
implicit formula for it. But we have not included this in the present paper since
formulae become very complicated and it is unclear at present whether the actual
computations can be performed, even in simple examples. The technical reason for
this is that, following the present method, to compute F”I(u), one needs to differ-
entiate expressions that contain the ”helix process” that we introduce in section 4,
containing singularities with unpleasant behaviour, (see Azäıs and Wschebor, 2002).

For Gaussian fields defined on a d-dimensional regular manifold (d > 1) and
possessing regular paths we obtain some improvements with respect to classical
and general results due to Tsirelson (1975) for Gaussian sequences. An example is
Corollary 5.1, that provides an asymptotic formula for F ′

I(u) as u → +∞ which is
explicit in terms of the covariance of the process and can be compared with Theorem
4 in Tsirelson (1975) where an implicit expression depending on the function F itself
is given.

We use the following notations:
If Z is a smooth function U Ã Rd′ , U a subset of Rd, its successive derivatives

are denoted Z ′, Z ′′,...Z(k) and considered respectively as linear, bilinear, ..., k−linear
forms on Rd. For example, X(3)(t)[v1, v2, v3] is the value of the third derivative at
point t applied to the triplet (v1, v2, v3). The same notation is used for a derivative
on a C∞ manifold.

İ , ∂I and Ī are respectively the interior, the boundary and the closure of the set
I. If ξ is a random vector with values in Rd , whenever they exist, we denote by
pξ(x) the value of the density of ξ at the point x, by E(ξ) its expectation and by
Var(ξ) its variance-covariance matrix. λ is Lebesgue measure. If u, v are points in
Rd, 〈u, v〉 denotes their usual scalar product and ‖u‖ the Euclidean norm of u. For
M a d× d real matrix, we denote ‖M‖ = sup‖x‖=1 ‖Mx‖

Also for symmetric M , M Â 0 (respectively M ≺ 0) denotes that M is positive
definite (resp. negative definite). Ac denotes the complement of the set A. For real
x, x+ = sup(x, 0), x− = sup(−x, 0)

2 Rice formulae

Our main results in this section are the following:
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Theorem 2.1 Let Z : I Ã Rd , I a compact subset of Rd, be a random field and
u ∈ Rd. Assume that:

A0: Z is Gaussian, A1: t Ã Z(t) is a.s. of class C1,
A2: for each t ∈ I, Z(t) has a non degenerate distribution (i.e. Var

(
Z(t)

) Â 0),

A3: P{∃t ∈ İ , Z(t) = u, det
(
Z ′(t)

)
= 0} = 0

A4: λ(∂I) = 0.
Then

E
(
NZ

u (I)
)

=

∫

I

E (| det(Z ′(t))|/Z(t) = u) pZ(t)(u)dt, (1)

and both members are finite.

Theorem 2.2 Let k, k ≥ 2 be an integer. Assume the same hypotheses as in
Theorem (2.1) excepting for A2 that is replaced by

A’2 : for t1, ..., tk ∈ I pairwise different values of the parameter, the distribution
of

(
Z(t1), ..., Z(tk)

)
does not degenerate in (Rd)k. Then

E
[(

NZ
u (I)

)(
NZ

u (I)− 1
)
...

(
NZ

u (I)− k + 1
)]

=

∫

Ik

E

(
k∏

j=1

| det
(
Z ′(tj)

)|/Z(t1) = ... = Z(tk) = u

)

pZ(t1),...,Z(tk)(u, ..., u)dt1...dtk, (2)

where both members may be infinite.

Remark.
Note that Theorem 2.1 (resp 2.2) remains valid, excepting for the finiteness of the

expectation in Theorem (2.1), if I is open and hypotheses A0,A1,A2 (resp A’2) and
A3 are verified. This follows immediately from the above statements. A standard ex-
tension argument shows that (1) holds true if one replaces I by any Borel subset of İ

Sufficient conditions for hypotheses A3 to hold are given by the next proposition.
Under condition a) the result is proved in Lemma 5 of Cucker and Wschebor (2002).
Under condition b) the proof is straightforward.

Proposition 2.1 Let Z : I Ã Rd , I a compact subset of Rd be a random field with
paths of class C1 and u ∈ Rd. Assume that

• pZ(t)(x) ≤ C for all t ∈ I and x in some neighbourhood of u.
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• at least one of the two following hypotheses is satisfied:

a) a.s. t Ã Z(t) is of class C2

b)α(δ) = supt∈I,x∈V (u) P
{| det(Z ′(t))| < δ/Z(t) = x

} → 0 as δ → 0, where
V (u) is some neighbourhood of u.

Then A3 holds true.

The following lemma is easy to prove:

Lemma 2.1 With the notations of Theorem (2.1), suppose that A1 and A4 hold
true and that pZ(t)(x) ≤ C for all t ∈ I and x in some neighbourhood of u Then
P

{
NZ

u (∂I) 6= 0
}

= 0

Lemma 2.2 Let Z : I → Rd, I a compact subset of Rd, be a C1 function and u a
point in Rd. Assume that

a) inft∈Z−1({u})
(
λmin

(
Z ′(t)

)) ≥ ∆ > 0

b) ωZ′(η) < ∆/d
where ωZ′ is the continuity modulus of Z ′, defined as the maximum of the con-

tinuity moduli of its entries, λmin(M) is the square root of smallest eigenvalue of
MT M and η is a positive number.

Then, if t1, t2 are two distinct roots of the equation Z(t) = u such that the
segment [t1, t2] is contained in I, the Euclidean distance between t1 and t2 is greater
than η.

Proof: Set η̃ = ‖t1 − t2‖ , v = t1−t2
‖t1−t2‖ . Using the mean value theorem, for

i = 1, ..., d, there exists ξi ∈ [t1, t2] such that
(
Z ′(ξi)v

)
i
= 0 Thus

|(Z ′(t1)v
)

i
| = |(Z ′(t1)v

)
i
− (

Z ′(ξi)v
)

i
|

≤
d∑

k=1

|Z ′(t1)ik − Z ′(ξi)ik||vk| ≤ ωZ′(η̃)
d∑

k=1

|vk| ≤ ωZ′(η̃)
√

d

In conclusion ∆ ≤ λmin

(
Z ′(t1)

) ≤ ‖Z ′(t1)v‖ ≤ ωZ′(η̃)d, that implies η̃ > η. ¤

Proof of Theorem 2.1: Consider a continuous non-decreasing function F such
that F (x) = 0 for x ≤ 1/2 F (x) = 1 for x ≥ 1. Let ∆ and η be positive real numbers.
Define the random function

α∆,η(u) = F
( 1

2∆
inf
s∈I

[
λmin

(
Z ′(s)

)
+ ‖Z(s)− u‖]

)
×

(
1− F

( d

∆
ωZ′(η)

))
, (3)
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and the set I−η = {t ∈ I : ‖t − s‖ ≥ η, ∀s /∈ I}. If α∆,η(u) > 0 and NZ
u (I−η)

does not vanish, conditions a) and b) in Lemma 2.2 are satisfied. Hence, in each
ball with diameter η

2
centred at a point in I−η there is at most one root of the

equation Z(t) = u, and a compactness argument shows that NZ
u (I−η) is bounded by

a constant C(η, I), depending only on η and on the set I.
Take now any real-valued non-random continuous function f : Rd → R with

compact support. Because of the coarea formula (Federer, 1969, Th 3.2.3), since
a.s. Z is Lipschitz and α∆,η(u).f(u) is integrable:

∫

Rd

f(u)NZ
u (I−η)α∆,η(u)du =

∫

I−η

| det(Z ′(t))|f(
Z(t)

)
α∆,η

(
Z(t)

)
dt.

Taking expectations in both sides,

∫

Rd

f(u)E
(
NZ

u (I−η)α∆,η(u)
)
du =

∫

Rd

f(u)du

∫

I−η

E (| det(Z ′(t))|α∆,η(u)/Z(t) = u) pZ(t)(u)dt.

It follows that the two functions

(i) : E
(
NZ

u (I−η)α∆,η(u)
)

(ii) :

∫

I−η

E (| det(Z ′(t))|α∆,η(u)/Z(t) = u) pZ(t)(u)dt,

coincide Lebesgue-almost everywhere as functions of u.
Let us prove that both functions are continuous, hence they are equal for every

u ∈ Rd.
Fix u = u0 and let us show that the function in (i) is continuous at u = u0.

Consider the random variable inside the expectation sign in (i). Almost surely, there
is no point t in Z−1({u0}) such that det(Z ′(t)) =0. By the local inversion theorem,
Z(.) is invertible in some neighbourhood of each point belonging to Z−1({u0}) and
the distance from Z(t) to u0 is bounded below by a positive number for t ∈ I−η

outside of the union of these neighbourhoods. This implies that, a.s., as a function of
u, NZ

u (I−η) is constant in some (random) neighbourhood of u0. On the other hand, it
is clear from its definition that the function u Ã α∆,η(u) is continuous and bounded.
We may now apply dominated convergence as u → u0, since NZ

u (I−η)α∆,η(u) is
bounded by a constant that does not depend on u.
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For the continuity of (ii), it is enough to prove that, for each t ∈ I the conditional
expectation in the integrand is a continuous function of u. Note that the random
variable | det(Z ′(t))|α∆,η(u) is a functional defined on {(Z(s), Z ′(s)) : s ∈ I}. Per-
form a Gaussian regression of (Z(s), Z ′(s)) : s ∈ I with respect to the random
variable Z(t), that is, write

Z(s) = Y t(s) + αt(s)Z(t)

Z ′
j(s) = Y t

j (s) + βt
j(s)Z(t), j = 1, ..., d

where Z ′
j(s) (j = 1, ..., d) denote the columns of Z ′(s), Y t(s) and Y t

j (s) are Gaussian
vectors, independent of Z(t) for each s ∈ I, and the regression matrices αt(s), βt

j(s)
(j = 1, ..., d) are continuous functions of s, t (take into account A2). Replacing in
the conditional expectation we are now able to get rid of the conditioning, and using
the fact that the moments of the supremum of an a.s. bounded Gaussian process
are finite, the continuity in u follows by dominated convergence.

So, now we fix u ∈ Rd and make η ↓ 0, ∆ ↓ 0 in that order, both in (i)
and (ii). For (i) one can use Beppo Levi’s Theorem. Note that almost surely
NZ

u (I−η) ↑ NZ
u (İ) = NZ

u (I), where the last equality follows from Lemma 2.1. On
the other hand, the same Lemma 2.1 plus A3 imply together that,almost surely:

inf
s∈I

[
λmin

(
Z ′(s)

)
+ ‖Z(s)− u‖

]
> 0

so that the first factor in the right-hand member of (3) increases to 1 as ∆ decreases
to zero. Hence by Beppo Levi’s Theorem:

lim
∆↓0

lim
η↓0

E
(
NZ

u (I−η)α∆,η(u)
)

= E
(
NZ

u (I)
)
.

For (ii), one can proceed in a similar way after de-conditioning obtaining (1). To
finish the proof, remark that standard Gaussian calculations show the finiteness of
the right-hand member of (1). ¤

Proof of Theorem 2.2: For each δ > 0, define the domain

Dk,δ(I) = {(t1, ..., tk) ∈ Ik, ‖ti − tj‖ ≥ δ if i 6= j, i, j = 1, ..., k}

and the process Z̃

(t1, ..., tk) ∈ Dk,δ(I) Ã Z̃(t1, ..., tk) =
(
Z(t1), ..., Z(tk)

)
.
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It is clear that Z̃ satisfies the hypotheses of Theorem 2.1 for every value (u, ..., u) ∈
(Rd)k. So,

E
[
N Z̃

(u,...,u)

(
Dk,δ(I)

)]
=

∫

Dk,δ(I)

E
( k∏

j=1

| det
(
Z ′(tj)

)|/Z(t1) = ... = Z(tk) = u
)
pZ(t1),...,Z(tk)(u, ..., u)dt1...dtk (4)

To finish, let δ ↓ 0, note that
(
NZ

u (I)
)(

NZ
u (I)−1

)
...

(
NZ

u (I)−k+1
)

is the monotone

limit of N Z̃
(u,...,u)

(
Dk,δ(I)

)
, and that the diagonal Dk(I) =

{
(t1, ..., tk) ∈ Ik, ti = tj

for some pair i, j, i 6= j
}

has zero Lebesgue measure in (Rd)k. ¤

Remark
Even thought we will not use this in the present paper, we point out that it is

easy to adapt the proofs of Theorems 2.1 and 2.2 to certain classes of non-Gaussian
processes.

For example, the statement of Theorem 2.1 remains valid if one replaces hy-
potheses A0 and A2 respectively by the following B0 and B2:

B0 : Z(t) = H(Y (t)) for t ∈ I where
Y : I → Rn is a Gaussian process with C1 paths such that for each t ∈ I, Y (t) has
a non-degenerate distribution and H : Rn → Rd is a C1 function.

B2 : for each t ∈ I, Z(t) has a density pZ(t) which is continuous as a function of
(t, u).

Note that B0 and B2 together imply that n ≥ d. The only change to be intro-
duced in the proof of the theorem is in the continuity of (ii) where the regression is
performed on Y (t) instead of Z(t)

Similarly, the statement of Theorem 2.2 remains valid if we replace A0 by B0 and
add the requirement the joint density of Z(t1), ..., Z(tk) to be a continuous function
of t1, ..., tk, u for pairwise different t1, ..., tk

Now consider a process X from I to R and define

MX
u,1(I) = ] {t ∈ I, X(.) has a local maximum at the point t, X(t) > u}

MX
u,2(I) = ] {t ∈ I, X ′(t) = 0, X(t) > u}

The problem of writing Rice Formulae for the factorial moments of these random
variables can be considered as a particular case of the previous one and the proofs are
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the same, mutatis mutandis. For further use, we state as a theorem, Rice Formula
for the expectation. For short we do not state the equivalent of Theorem (2.2) that
holds true similarly.

Theorem 2.3 Let X : I Ã R , I a compact subset of Rd, be a random field. Let
u ∈ R, define MX

u,i(I), i = 1, 2 as above. For each d× d real symmetric matrix M ,
we put δ1(M) := | det(M)|1IM≺0, δ2(M) := | det(M)|.

Assume:
A0: X is Gaussian, A”1: a.s. t Ã X(t) is of class C2,
A”2: for each t ∈ I, X(t), X ′(t) has a non degenerate distribution in R1 ×Rd,
A”3: either a.s. t Ã X(t) is of class C3

or α(δ) = supt∈I,x′∈V (0) P
(| det

(
X ′′(t)

)| < δ/X ′(t) = x′
) → 0 as δ → 0, where

V (0) denotes some neighbourhood of 0,
A4: ∂I has zero Lebesgue measure.
Then, for i = 1, 2 :

E
(
MX

u,i(I)
)

=

∫ ∞

u

dx

∫

I

E
(
δi

(
X ′′(t)

)
/X(t) = x,X ′(t) = 0

)
pX(t),X′(t)(x, 0)dt

and both members are finite.

2.1 Processes defined on a smooth manifold.

Let U be a differentiable manifold (by differentiable we mean infinitely differentiable)
of dimension d. We suppose that U is orientable in the sense that there exists a
non-vanishing differentiable d-form Ω on U . This is equivalent to assuming that
there exists an atlas

(
(Ui, φi); i ∈ I

)
such that for any pair of intersecting charts

(Ui, φi), (Uj, φj), the Jacobian of the map φi ◦ φ−1
j is positive.

We consider a Gaussian stochastic process with real values and C2 paths X =
{X(t) : t ∈ U} defined on the manifold U . In this subsection we first write Rice
Formulae for this kind of processes without further hypotheses on U . When U is
equipped with a Riemannian metric , we give without details and proof, a nicer form.
Other forms exist also when U is naturally embedded in a an Euclidean space, but
we do not need this in the sequel. (see Azäıs and Wschebor, 2002).

We will assume that in every chart X(t) and DX(t) have a non-degenerate joint
distribution and that hypothesis A”3 is verified. For S a Borel subset of U̇ , the
following quantities are well defined and measurable : MX

u,1(S), the number of local
maxima and MX

u,2(S), the number of critical points.
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Proposition 2.2 For k = 1, 2 the quantity which is expressed in every chart φ with
coordinates s1, ..., sd as

∫ +∞

u

dxE
(
δk(Y ′′(s))/Y (s) = x, Y ′(s) = 0

)
pY (s),Y ′(s)(x, o) ∧d

i=1 dsi, (5)

where Y (s) is the process X written in the chart : Y = X ◦ φ−1, defines a d-form
Ωk on U̇ and for every Borel set S ⊂ U̇

∫

S

Ωk = E
(
MX

u,k(S)
)
.

Proof: Note that a d-form is a measure on U̇ whose image in each chart is
absolutely continuous with respect to Lebesgue measure ∧d

i=1dsi,. To prove that (5)
defines an d-form, it is sufficient to prove that its density with respect to ∧d

i=1dsi,
satisfies locally the change-of-variable formula. Let (U1, φ1), (U2, φ2) two intersecting
charts and set

U3 := U1 ∩ U2 ; Y1 := X ◦ φ−1
1 ; Y2 := X ◦ φ−1

2 ; H := φ2 ◦ φ−1
1 .

Denote by s1
i and s2

i , i = i, ..., d the coordinates in each chart. We have

∂Y1

∂s1
i

=
∑

i′

∂Y2

∂s2
i′

∂Hi′

∂s1
i

∂2Y1

∂s1
i ∂s1

j

=
∑

i′,j′

∂2Y2

∂s2
i′∂s2

j′

∂Hi′

∂s1
i

∂Hj′

∂s1
j

+
∑

i′

∂Y2

∂s2
i′

∂2Hi′

∂s1
i ∂s1

j

.

Thus at every point

Y ′
1(s

1) =
(
H ′(s1)

)T
Y ′

2(s
2),

pY1(s1),Y ′1(s1)(x, 0) = pY2(s2),Y ′2(s2)(x, 0)| det(H ′(s1)|−1

and at a singular point

Y ′′
1 (s1) =

(
H ′(s1)

)T
Y ′′

2 (s2)H ′(s1).

On the other hand, by the change of variable formula

∧d
i=1ds1

i = | det(H ′(s1)|−1 ∧d
i=1 ds2

i .

Replacing in the integrand in (5), one checks the desired result.
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For the second part again it suffices to prove it locally for an open subset S
included in a unique chart. Let (S, φ) a chart and let again Y (s) be the process
written in this chart, it suffices to check that

E
(
MX

u,k(S)
)

=∫

φ(S)

dλ(s)

∫ +∞

u

dx E
(
δk(Y ′′(s))/Y (s) = x, Y ′(s) = 0

)
pY (s),Y ′(s)(x, 0). (6)

Since MX
u,k(S) is equal to MY

u,k {φ(S)}, we see that the result is a direct conse-
quence of Theorem (2.3)

Even though in the integrand in (5) the product does not depend on the param-
eterization, each factor does. When the manifold U is equipped with a Riemannian
metric it is possible to rewrite equation (5) as

∫ +∞

u

dx E
(
δk(∇2X(s)/X(s) = x,∇X(s) = 0

)
pX(s),∇X(s)(x, 0) V ol (7)

where ∇2X(s) and ∇X(s) are respectively the Hessian and the gradient read in an
orthonormal basis.

Remark: One can consider a number of variants of Rice formulae, in which we
may be interested in computing the moments of the number of roots of the equation
Z(t) = u under some additional conditions. This has been the case in the statement
of Theorem 2.3 in which we have given formulae for the first moment of the number
of zeroes of X ′ in which X is bigger than u (i=2) and also the real-valued process
X has a local maximum (i=1).

We just consider below two additional examples of variants that we state here
for further reference. We limit the statements to random fields defined on subsets
of Rd. Similar statements hold true when the parameter set is a general smooth
manifold. Proofs are essentially the same as the previous ones.

Variant 1: Assume that Z1, Z2 are Rd-valued random fields defined on compact
subsets I1, I2 of Rd and suppose that (Zi, Ii) (i = 1, 2) satisfy the hypotheses of
Theorem 2.1 and that for every s ∈ I1 and t ∈ I2, the distribution of

(
Z1(s), Z2(t)

)
does not degenerate. Then, for each pair u1, u2 ∈ Rd:

E
(
NZ1

u1
(I1)N

Z2
u2

(I2)
)

=

∫

I1×I2

dt1dt2

E (| det(Z ′
1(t1))|| det(Z ′

2(t2))|/Z1(t1) = u1, Z2(t2) = u2) pZ1(t1),Z2(t2)(u1, u2), (8)
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Variant 2: Let Z, I be as in Theorem 2.1 and ξ a real-valued bounded random
variable which is measurable with respect to the σ-algebra generated by the process
Z. Assume that for each t ∈ I, there exists a continuous Gaussian process {Y t(s) :
s ∈ I}, for each s, t ∈ I a non-random function αt(s) : Rd → Rd and a Borel-
measurable function g : C → R where C is space of real-valued continuous functions
on I equipped with the supremum norm, such that:

1. ξ = g
(
Y t(.) + αt(.)Z(t)

)

2. Y t(.) and Z(t) are independent

3. for each u0 ∈ R, almost surely the function u Ã g
(
Y t(.)+αt(.)u

)
is continuous

at u = u0

Then the formula :

E
(
NZ

u (I)ξ
)

=

∫

I

E (| det(Z ′(t))|ξ/Z(t) = u) pZ(t)(u)dt,

holds true.
We will be particularly interested in the function ξ = 1IMI<v for some v ∈ R. We

will see that later on that it satisfies the above conditions under certain hypotheses
on the process Z.

3 First Derivative, First Form.

Our main goals in this and the next section are to prove existence and regularity
of the derivative of the function u Ã FI(u) and, at the same time, that it satisfies
some implicit formulae that can be used to provide bounds on it. In the following
we assume that I is a d-dimensional C∞ manifold embedded in RN , N ≥ d. σ and
σ̃ are respectively the geometric measures on I and ∂I. Unless explicit statement of
the contrary, the topology on I will be he relative topology.

In this section we prove formula (10) for F ′
I(u). -that we call “first form”- which

is valid for λ-almost every u, under strong regularity conditions on the paths of the
process X. In fact, the hypothesis that X is Gaussian is only used in Rice formula
itself and in Lemma 3.1 which gives a bound for the joint density pX(s),X(t),X′(s),X′(t).
In both places, one can substitute Gaussianity by appropriate conditions that permit
to obtain similar results.

12



More generally, it is easy to see that inequality (9) below is valid under quite
general non Gaussian conditions and implies that we have the following upper bound
for the density of the distribution of the random variable MI .

F ′
I(u) ≤

∫

I

E
(
δ1(X ′′(t))/X(t) = u,X ′(t) = 0

)
pX(t),X′(t)(u, 0)σ(dt)+

∫

∂I

E
(
δ1(X̃ ′′(t))/X(t) = u, X̃ ′(t) = 0

)
pX(t),X̃′(t)(u, 0)σ̃(dt), (9)

where the function δ1 has been defined in the statement of Theorem 2.3 and X̃
denotes the restriction of X to the boundary ∂I.

Even for d = 1 (one parameter processes) and X Gaussian and stationary, in-
equality (9) provides reasonably good upper bounds for F ′

I(u) (see Diebolt and Posse
(1996), Azäıs and Wschebor (2001). We will see an example for d = 2 at the end of
this section.

In the next section, we are able to prove that FI(u) is a C1 function and that
formula (10) can be essentially simplified by getting rid of the conditional expecta-
tion, thus obtaining the “second form” for the derivative. This is done under weaker
regularity conditions but the assumption that X is Gaussian becomes essential.

Definition 3.1 Let X : I → R be real-valued stochastic process defined on a
subset of Rd. We will say that X satisfies condition (Hk), k a positive integer, if
the following three conditions hold true:

• X is Gaussian;

• a.s. the paths of X are of class Ck;

• for any choice of pairwise different values of the parameter t1, ...., tn the joint
distribution of the random variables
X(t1), ..., X(tn), X ′(t1), ..., X ′(tn), ....., X(k)(t1), ..., X

(k)(tn) has maximum rank.

The next proposition shows that there exist processes that satisfy (Hk).

Proposition 3.1 Let X =
{
X(t) : t ∈ Rd

}
be a centred stationary Gaussian pro-

cess having continuous spectral density fX . Assume that fX(x) > 0 for every x ∈ Rd

and that for any α > 0 fX(x) ≤ Cα ‖x‖−α holds true for some constant Cα and all
x ∈ Rd. Then, X satisfies (Hk) for every k = 1, 2, ...

13



Proof: The proof is an adaptation of the proof of a related result for d = 1
(Cramer & Leadbetter (1967), p. 203) see Azäıs and Wschebor (2002) ¤

Theorem 3.1 (First derivative, first form) Let X : I → R be a Gaussian
process, I a C∞ compact d-dimensional manifold . Assume that X verifies Hk for
every k = 1, 2, ...

Then, the function u Ã FI(u) is absolutely continuous and its Radon-Nikodym
derivative is given for almost every u by:

F ′
I(u) = (−1)d

∫

I

E (det(X ′′(t)) 1IMI≤u/X(t) = u, X ′(t) = 0) pX(t),X′(t)(u, 0)σ(dt)+

(−1)d−1

∫

∂I

E
(
det(X̃ ′′(t)) 1IMI≤u/X(t) = u, X̃ ′(t) = 0

)
pX(t),X̃′(t)(u, 0)σ̃(dt). (10)

Proof : For u < v and S (respectively S̃) a subset of I (resp. ∂I), let us denote

Mu,v(S) = ] {t ∈ S : u < X(t) ≤ v, X ′(t) = 0, X ′′(t) ≺ 0}
M̃u,v(S̃) = ]

{
t ∈ S̃ : u < X(t) ≤ v, X̃ ′(t) = 0, X̃ ′′(t) ≺ 0

}

Step 1. Let h > 0 and consider the increment

FI(u)− FI(u− h) = P
(
{MI ≤ u} ∩

[{
Mu−h,u(İ) ≥ 1

}
∪

{
M̃u−h,u(∂I) ≥ 1

}])
.

Let us prove that

P
(
Mu−h,u(İ) ≥ 1, M̃u−h,u(∂I) ≥ 1

)
= o(h) as h ↓ 0. (11)

In fact, for δ > 0 :

P
(
Mu−h,u(İ) ≥ 1, M̃u−h,u(∂I) ≥ 1

)

≤ E
(
Mu−h,u(I−δ)M̃u−h,u(∂I)

)
+ E (Mu−h,u(I \ I−δ)) (12)

The first term in the right-hand member of (12) can be computed by means of
a Rice-type Formula, and it can be expressed as:

∫

I−δ×∂I

σ(dt)σ̃(dt̃)

∫∫ u

u−h

dxdx̃

E
(
δ1(X ′′(t))δ1(X̃ ′′(t̃))/X(t) = x, X̃(t̃) = x̃, X ′(t) = 0, X̃ ′(t̃) = 0

)

pX(t),X̃(t̃),X′(t),X̃′(t̃)(x, x̃, 0, 0),

14



where the function δ1 has been defined in Theorem 2.3.
Since in this integral

∥∥t− t̃
∥∥ ≥ δ, the integrand is bounded and the integral is

O(h2).
For the second term in (12) we apply Rice formula again. Taking into account

that the boundary of I is smooth and compact, we get:

E (Mu−h,u(I \ I−δ)}
=

∫

I\I−δ

σ(dt)

∫ u

u−h

E
(
δ1(X ′′(t))/X(t) = x,X ′(t) = 0

)
pX(t),X′(t)(x, 0) dx

≤ (const) h σ(I \ I−δ) ≤ (const) hδ.,

where the constant does not depend on h and δ. Since δ > 0 can be chosen arbitrarily
small, (11) follows and we may write as h → 0:

FI(u)− FI(u− h)

= P
(
MI ≤ u,Mu−h,u(İ) ≥ 1

)
+ P

(
MI ≤ u, M̃u−h,u(∂I) ≥ 1

)
+ o(h)

Note that the foregoing argument also implies that FI is absolutely continuous
with respect to Lebesgue measure and that the density is bounded above by the
right-hand member of (10). In fact:

FI(u)− FI(u− h) ≤ P
(
Mu−h,u(İ) ≥ 1

)
+ P

(
M̃u−h,u(∂I) ≥ 1

)

≤ E
(
Mu−h,u(İ)

)
+ E

(
M̃u−h,u(∂I)

)

and it is enough to apply Rice Formula to each one of the expectations on the
right-hand side.

The delicate part of the proof consists in showing that we have equality in (10).

Step 2. For g : I → R we put ‖g‖∞ = sup
t∈I

|g(t)| and if k is a non-negative

integer, ‖g‖∞,k = sup
k1+k2+..+kd≤k

‖∂k1,k2...,kd
g‖∞ . For fixed γ > 0 (to be chosen later

on) and h > 0,we denote by Eh =
{
‖X‖∞,4 ≤ h−γ

}
. Because of the Landau-Shepp-

Fernique inequality (see Landau-Shepp, 1970 or Fernique, 1975) there exist positive
constants C1, C2 such that

P(EC
h ) ≤ C1 exp

[−C2h
−2γ

]
= o(h) as h → 0
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so that to have (10) it suffices to show that, as h → 0 :

E
([

Mu−h,u(İ)− 1IMu−h,u(İ)≥1

]
1IMI≤u1IEh

)
= o(h) (13)

E
([

M̃u−h,u(∂I)− 1IM̃u−h,u(∂I)≥1

]
1IMI≤u1IEh

)
= o(h) (14)

We prove (13). (14) can be proved in a similar way.
Put Mu−h,u = Mu−h,u(İ). We have, on applying Rice formula for the second

factorial moment:

E
([

Mu−h,u − 1IMu−h,u≥1

]
1IMI≤u 1IEh

) ≤ E (Mu−h,u(Mu−h,u − 1) 1IEh
)

=

∫∫

I×I

As,tσ(ds) σ(dt), (15)

where

As,t =

∫∫ u

u−h

dx1dx2

E
(|det(X ′′(s) det(X ′′(t)| 1IX′′(s)≺0,X′′(t)≺0 1IEh

/X(s) = x1, X(t) = x2, X
′(s) = 0, X ′(t) = 0

)

.pX(s),X(t),X′(s),X′(t)(x1,x2, 0, 0). (16)

Our goal is to prove that As,t is o(h) as h ↓ 0 uniformly on s, t. Note that
when s, t vary in a domain of the form Dδ := {t, s ∈ I : ‖t − s‖ > δ} for
some δ > 0, then the Gaussian distribution in (16) is non-degenerate and As,t is
bounded by (const)h2, the constant depending on the minimum of the determinant:
det Var

(
(X(s), X(t), X ′(s), X ′(t)

)
, for s, t ∈ Dδ.

So it is enough to prove that As,t = o(h) for ‖t− s‖ small, and we may assume
that s and t are in the same chart (U, φ). Writing the process in this chart we may
assume that I is a ball or a half ball in Rd. Let s, t two such points, define the
process Y = Y s,t by Y (τ) = X

(
s + τ(t − s)

)
; τ ∈ [0, 1]. Under the conditioning

one has:
Y (0) = x1, Y (1) = x2, Y ′(0) = Y ′(1) = 0

Y ′′(0) = X ′′(s)[(t− s), (t− s)] ; Y ′′(1) = X ′′(t)[(t− s), (t− s)].

Consider the interpolation polynomial Q of degree 3 such that

Q(0) = x1, Q(1) = x2, Q′(0) = Q′(1) = 0
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Check that

Q(y) = x1 + (x2 − x1) y2(3− 2y), Q′′(0) = −Q′′(1) = 6(x2 − x1)

Denote Z(τ) = Y (τ) − Q(τ) 0 ≤ τ ≤ 1. Under the conditioning, one has Z(0) =
Z(1) = Z ′(0) = Z ′(1) = 0 and if also the event Eh occurs, an elementary calculation
shows that for 0 ≤ τ ≤ 1 :

|Z ′′(τ)| ≤ sup
τ∈[0,1]

|Z(4)(τ)|
2!

= sup
τ∈[0,1]

|Y (4)(τ)|
2!

≤ (const)‖t− s‖4h−γ. (17)

On the other hand, check that if A is a positive semi-definite symmetric d × d
real matrix and v1 is a vector of Euclidean norm equal to 1, then the inequality

det(A) ≤ 〈Av1, v1〉 det(B) (18)

holds true, where B is the (d − 1) × (d − 1) matrix B = ((〈Avj, vk〉))j,k=2,...,d and

{v1, v2, ..., vd} an orthonormal basis of Rd containing v1.
Assume X”(s) is negative definite, and that the event Eh occurs. We can apply

(18) to the matrix A = −X”(s) and the unit vector v1 = (t−s)/‖t−s‖. Note that in
that case, the elements of matrix B are of the form 〈−X”(s)vj, vk〉 hence bounded
by (const)h−γ. So,

det [−X ′′(s)] ≤ 〈−X ′′(s)v1, v1〉 Cd h−(d−1)γ = Cd [Y ′′(0)]
− ‖t− s‖−2h−(d−1)γ

the constant Cd depending only on the dimension d.
Similarly, if X”(t) is negative definite, and the event Eh occurs, then:

det [−X ′′(t)] ≤ Cd [Y ′′(1)]
− ‖t− s‖−2h−(d−1)γ

Hence, if C is the condition {X(s) = x1, X(t) = x2, X
′(s) = 0, X ′(t) = 0}:

E
(|det(X ′′(s)) det(X ′′(t))| 1IX′′(s)≺0,X′′(t)≺0 1IEh

/C)

≤ C2
d h−2(d−1)γ‖t− s‖−4E

(
[Y ′′(0)]

−
[Y ′′(1)]

−
1IEh

/C
)

≤ C2
d h−2(d−1)γ‖t− s‖−4E

([
Y ′′(0) + Y ′′(1)

2

]2

1IEh
/C

)

= C2
d h−2(d−1)γ‖t− s‖−4E

([
Z ′′(0) + Z ′′(1)

2

]2

1IEh
/C

)

≤ (const) C2
d h−2dγ ‖t− s‖4

We now turn to the density in (15) using the following Lemma which is similar
to Lemma 4.3., p. 76, in Piterbarg (1996). The proof is omitted.
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Lemma 3.1 For all s, t ∈ I:

‖t− s‖d+3 pX(s),X(t),X′(s),X′(t)(0, 0, 0, 0) ≤ D (19)

where D is a constant.

Back to the proof of the theorem, to bound the expression in (15) we use Lemma
3.1 and the bound on the conditional expectation, thus obtaining

E (Mu−h,u(Mu−h,u − 1)1IEh
) ≤ (const)C2

d h−2dγD∫∫

I×I

‖t− s‖−d+1 ds dt

∫∫ u

u−h

dx1dx2 ≤ (const) h2−2dγ (20)

since the function (s, t) Ã ‖t− s‖−d+1 is Lebesgue-integrable in I × I. The last
constant depends only on the dimension d and the set I, Taking γ small enough
(13) follows. ¤

An example: Let {X(s, t)} be a real-valued two-parameter Gaussian, centred
stationary isotropic process with covariance Γ. Assume that Γ(0) = 1 and that the
spectral measure µ is absolutely continuous with density µ(ds, dt) = f(ρ)dsdt, ρ =

(s2 + t2)
1
2 . Assume further that Jk =

∫ +∞
0

ρkf(ρ)dρ < ∞, for 1 ≤ k ≤ 5. Our aim
is to give an explicit upper bound for the density of the probability distribution of
MI where I is the unit disc. Using (9) which is a consequence of Theorem 3.1 and
the invariance of the law of the process, we have

F ′
I(u) ≤ πE

(
δ1(X ′′(0, 0))/X(0, 0) = u,X ′(0, 0) = (0, 0)

)
pX(0,0),X′(0,0)(u, (0, 0))

+ 2πE
(
δ1(X̃ ′′(1, 0))/X(1, 0) = u, X̃ ′(1, 0) = 0

)
pX(1,0),X̃′(1,0)(u, 0) = I1 + I2. (21)

We denote by X, X ′, X ′′ the value of the different processes at some point (s, t);
by X ′′

ss, X
′′
st, X

′′
tt the entries of the matrix X ′′ and by ϕ and Φ the standard normal

density and distribution.
One can easily check that: X ′ is independent of X and X ′′, and has variance

πJ3Id; X ′′
st is independent of X, X ′ X ′′

ss and X ′′
tt, and has variance π

4
J5. Condition-

ally on X = u, the random variables X ′′
ss and X ′′

tt have
expectation: −πJ3 ; variance: 3π

4
J5 − (πJ3)

2 ; covariance: π
4
J5 − (πJ3)

2.
We obtain

I2 =

√
2

J3

ϕ(u)
[(3π

4
J5 − (πJ3)

2
) 1

2 ϕ(bu) + πJ3uΦ(bu)
]
,
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with b = πJ3(
3π
4

J5−(πJ3)2
) 1

2
.

As for I1 we remark that, conditionally on X = u, X ′′
ss + X ′′

tt and X ′′
ss −X ′′

tt are
independent, so that a direct computation gives:

I1 =
1

8πJ3

ϕ(u)E
[(

αη1 − 2πJ3u
)2 − πJ5

4
(η2

2 + η2
3)

1I{αη1 < 2πJ3u} 1I
{(αη1 − 2πJ3u

)2 − πJ5

4
(η2

2 + η2
3) > 0}

]
, (22)

Where η1, η2, η3 are standard independent normal random variables and α2 = 2πJ5−
4π2J2

3 . Finally we get

I1 =

√
2π

8πJ3

ϕ(u)

∫ ∞

0

[
(α2+a2−c2x2)Φ(a−cx)+[2aα−α2(a−cx)]ϕ(a−cx)

]
xϕ(x)dx,

with a = 2πJ3u, c =
√

πJ5

4
.

4 First derivative, second form

We choose, once for all along this section a finite atlas A for I. Then, to every t ∈ I
it is possible to associate a fixed chart that will be denoted (Ut, φt). When t ∈ ∂I,
φt(Ut) can be chosen to be a half ball with φt(t) belonging to the hyperplane limiting
this half ball. For t ∈ I, let Vt an open neighbourhood of t whose closure is included
in Ut and ψt a C∞ function such that ψt ≡ 1 on Vt ; ψt ≡ 0 on U c

t .

• For every t ∈ İ and s ∈ I we define the normalization n(t, s) in the following
way:

– for s ∈ Vt, we set “in the chart” (Ut, φt) n1(t, s) = 1
2
‖s− t‖2.

By “in the chart” we mean that ‖s− t‖, is in fact ‖φt(t)− φt(s)‖.
– for general s we set n(t, s) = ψt(s)n1(t, s) +

(
1− ψt(s)

)

Note that in the flat case (d=N) the simpler definition n(t, s) = 1
2
‖s − t‖2

works.

• For every t ∈ ∂I and s ∈ I, we set n1(t, s) = |(s − t)N | + 1
2
‖s − t‖2, where

(s − t)N is the normal component of (s − t) with respect to the hyperplane
delimiting the half ball φt(Ut) . The rest of the definition is the same.
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Definition 4.1 We will say that f is an helix-function - or an h-function - on I
with pole t ∈ I satisfying hypothesis Ht,k, k integer k > 1 if

• f is a bounded Ck function on I\{t} .

• f(s) := n(t, s)f(s) can be prolonged as function of class Ck on I.

Definition 4.2 In the same way X is called an h-process with pole t ∈ I satisfying
hypothesis Ht,k, k integer k > 1 if

• Z is a Gaussian process with Ck paths on I\{t} .

• for t ∈ İ; Z(s) := n(t, s)Z(s) can be prolonged as a process of class Ck on I,
with Z(t) = 0 Z ′(t) = 0. If s1, ..., sm are pairwise different points of I\{t}
then the distribution of Z(2)(t), ..., Z(k)(t), Z(s1), ..., Z

(k)(s1), ..., Z
(k)(sm) does

not degenerate.

• for t ∈ ∂I; Z(s) := n(t, s)Z(s) can be prolonged as a process of class Ck on

I with Z(t) = 0 Z̃
′
(t) = 0 and if s1, ..., sm are pairwise different points of I\{t}

then the distribution of Z ′
N(t), Z(2)(t), ..., Z(k)(t), Z(s1), ..., Z

(k)(s1), ..., Z
(k)(sm)

does not degenerate. Z ′
N(t) is the derivative normal to the boundary of I at t.

We use the terms “h-function” and “h-process” since the function and the paths
of the process need not to extend to a continuous function at the point t. However,
the definition implies the existence of radial limits at t. So the process may take the
form of a helix around t.

Lemma 4.1 Let X be a process satisfying Hk, k ≥ 2, and f be a Ck function I →R
(A) For t ∈ İ, set for s ∈ I, s 6= t

X(s) = at
sX(t)+ < bt

s, X
′(t) > +n(t, s)X t(s),

where at
s and bt

s are the regression coefficients.
In the same way, set

f(s) = at
sf(t)+ < bt

s, f
′(t) > +n(t, s)f t(s),

using the regression coefficients associated to X.
(B) For t ∈ ∂I, s ∈ T, s 6= t set

X(s) = ãt
sX(t)+ < b̃t

s, X̃
′(t) > +n(t, s)X t(s)
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and
f(s) = ãt

sf(t)+ < b̃t
s, f̃

′(t) > +n(t, s)f t(s),

Then s Ã X t(s) and s Ã f t(s) are respectively a h-process and a h-function with
pole t satisfying Ht,k.

Proof: We give the proof in the case t ∈ İ, the other one being similar. In fact,
the quantity denoted by X t(s) is just X(s)− at

sX(t)− < bt
s, X

′(t) >. On L2(Ω, P ),
let Π be the projector on the orthogonal complement to the subspace generated by
X(t), X ′(t). Using a Taylor expansion

X(s) = X(t)+ < (s− t), X ′(t) > +‖t− s‖2

∫ 1

0

X ′′((1− α)t + αs
)[

v, v
]
(1− α)dα,

With v = s−t
‖s−t‖ . This implies that

X t(s) = Π
[
‖t− s‖2

∫ 1

0

X ′′((1− α)t + αs
)[

v, v
]
(1− α)dα

]
, (23)

which gives the result due to the non degeneracy condition. ¤

We state now an extension of Ylvisaker’s Theorem (1968) on the regularity of
the distribution of the maximum of a Gaussian process which we will use in the
proof of Theorem 4.2 and might have some interest in itself.

Theorem 4.1 Let Z : T −→ R a Gaussian separable process on some parameter
set T and denote by MZ = supt∈T Z(t) which is a random variable taking values in
R∪ {+∞}. Assume that there exists σ0 > 0, m− > −∞ such that

m(t) = E(Zt) ≥ m− ; σ2(t) = Var(Zt) ≥ σ2
0

for every t ∈ T . Then the distribution of the random variable MZ is the sum of an
atom at +∞ and a-possibly defective-probability measure on R which has a locally
bounded density.

Proof: Suppose first that X : T −→ R a Gaussian separable process satisfying
Var(Xt) = 1 ; E(Xt) ≥ 0, for every t ∈ T . A close look at Ylvisaker’s proof (1968)
shows that the distribution of the supremum MX has a density pMX that satisfies

pMX (u) ≤ ψ(u) =
exp(−u2/2)∫∞

u
exp(−v2/2)dv

for every u ∈ R (24)
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Let now Z satisfy the hypotheses of the theorem. For given a, b ∈ R, a < b,
choose A ∈ R+ so that |a| < A and consider the process:

X(t) =
Z(t)− a

σ(t)
+
|m−|+ A

σ0

.

Clearly for every t ∈ T :

E
(
X(t)

)
=

m(t)− a

σ(t)
+
|m−|+ A

σ0

≥ −|m−|+ |a|
σ0

+
|m−|+ A

σ0

≥ 0,

and Var
(
X(t)

)
= 1. So that (24) holds for the process X.

On the other hand the statement follows from the inclusion:

{a < MZ ≤ b} ⊂ {|m−|+ A

σ0

< MX ≤ |m−|+ A

σ0

+
b− a

σ0

}.

which implies

P
{
a < MZ ≤ b

} ≤
∫ |m−|+A

σ0
+ b−a

σ0

|m−|+A

σ0

ψ(u)du =

∫ b

a

1

σ0

ψ
(v − a + |m−|+ A

σ0

)
dv.¤

Set now β(t) ≡ 1. The key point is that, due to regression formulae, under the
condition

{
X(t) = u,X ′(t) = 0

}
the event

Au(X, β) :=
{
X(s) ≤ u, ∀s ∈ I

}

coincides with the event

Au(X
t, βt) :=

{
X t(s) ≤ βt(s)u,∀s ∈ I\{t}},

where X t and βt are the h-process and the h-function defined in Lemma 4.1.

Theorem 4.2 (First derivative, second form) Let X : I → R be a Gaussian
process, I a C∞compact manifold contained in Rd. Assume that X has paths of class
C2 and for s 6= t the triplet (X(s), X(t), X ′(t)) in R×R×Rd has a non-degenerate
distribution. Then, the result of Theorem 3.1 is valid, the derivative F ′

I(u) given by
relation (10) can be written as

F ′
I(u) =

(− 1
)d

∫

I

E
[
det

(
X t′′(t)− βt′′(t)u

)
1IAu(Xt,βt)

]
pX(t),X′(t)(u, 0)σ(dt)

+
(− 1

)d−1
∫

∂I

E
[
det

(
X̃

t′′
(t)

)− β̃
t′′

(t)u 1IAu(Xt,βt)

]
pX(t),X̃′(t)(u, 0)σ̃(dt), (25)

and this expression is continuous as a function of u.
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The notation X̃
t′′

(t) should be understood in the sense that we first define X t and
then calculate its second derivative along ∂I.

Proof: As a first step, assume that the process X satisfies the hypotheses of
theorem 3.1, which are stronger that those in the present theorem.

We prove that the first term in (10) can be rewritten as the first term in (25).
One can proceed in a similar way with the second term, mutatis mutandis. For that
purpose, use the remark just before the statement of Theorem 4.2 and the fact that
under the condition

{
X(t) = u,X ′(t) = 0

}
, X ′′(t) is equal to X t′′(t)− βt′′(t)u.

Replacing in the conditional expectation in (10) and on account of the Gaus-
sianity of the process, we get rid of the conditioning and obtain the first term in
(25). We now study the continuity of u Ã F ′

I(u). The variable u appears at three
locations

• in the density pX(t),X′(t)(u, 0) which is clearly continuous

• in
E

[
det

(
X t′′(t)− βt′′(t)u

)
1IAu(Xt,βt)

]

where it occurs twice: in the first factor and in the indicator function.

Due to the integrability of the supremum of bounded Gaussian processes, it is
easy to prove that this expression is continuous as a function of the first u.

As for the u in the indicator function, set

ξv := det
(
X t′′(t)− βt′′(t)v

)
(26)

and, for h > 0, consider the quantity E
[
ξv 1IAu(Xt,βt)

]
− E

[
ξv 1IAu−h(Xt,βt)

]
which is

equal to

E
[
ξv 1IAu(Xt,βt)\Au−h(Xt,βt)

]
− E

[
ξv 1IAu−h(Xt,βt)\Au(Xt,βt)

]
(27)

Apply Schwarz’s inequality to the first term in (27).

E
[
ξv 1IAu(Xt,βt)\Au−h(Xt,βt)

]
≤ [

E(ξ2
v)P{Au(X

t, βt)\Au−h(X
t, βt)}]1/2

The event Au(X
t, βt)\Au−h(X

t, βt) can be described as

∀s ∈ I\{t} : X t(s)− βt(s)u ≤ 0 ; ∃s0 ∈ I\{t} : X t(s0)− βt(s0)(u− h) > 0

This implies that βt(s0) > 0 and that−‖βt‖∞h ≤ sups∈I\{t} X t(s)−βt(s)u ≤ 0. Now,
observe that our improved version of Ylvisaker’s theorem (Theorem 4.1),applies to

23



the process s Ã X t(s) − βt(s)u defined on I\{t}. This implies that the first term
in (27) tends to zero as h ↓ 0. An analogous argument applies to the second term.
Finally, the continuity of F ′

I(u) follows from the fact that one can pass to the limit
under the integral sign in (25).

To finish the proof we still have to show that the added hypotheses are in fact
unnecessary for the validity of the conclusion. Suppose now that the process X
satisfies only the hypotheses of the theorem and define

Xε(t) = Zε(t) + ε Y (t) (28)

where for each ε > 0, Zε is a real-valued Gaussian process defined on I, measur-
able with respect to the σ-algebra generated by {X(t) : t ∈ I}, possessing C∞
paths and such that almost surely Zε(t), Z ′

ε(t), Z ′′
ε (t) converge uniformly on I to

X(t), X ′(t), X ′′(t) respectively as ε ↓ 0. One standard form to construct such an ap-
proximation process Zε is to use a C∞ partition of the unity on I and to approximate
locally the composition of a chart with the function X by means of a convolution
with a C∞ kernel.

In (28), Y denotes the restriction to I of a Gaussian centred stationary process
satisfying the hypotheses of proposition 3.1, defined on RN , and independent of
X. Clearly Xε satisfies condition (Hk) for every k, since it has C∞ paths and
the independence of both terms in (28) ensures that Xε inherits from Y the non-
degeneracy condition in Definition 3.1. So, if
M ε

I = maxt∈I Xε(t) and F ε
I (u) = P{M ε

I ≤ u} one has

F ε′
I (u) =

(− 1
)d

∫

I

E
[
det

(
Xεt′′(t)− βεt′′(t)u

)
1IAu(Xεt,βε,t)

]
pXε(t),Xε′(t)(u, 0)σ(dt)

+
(− 1

)d−1
∫

∂I

E
[
det

(
X̃

εt′′
(t)

)− β̃
εt′′

(t)u 1IAu(Xεt,βεt)

]
pXε(t),X̃ε′(t)(u, 0)σ̃(dt), (29)

We want to pass to the limit as ε ↓ 0 in (29). We prove that the right-hand member
is bounded if ε is small enough and converges to a continuous function of u as ε ↓ 0.
Since M ε

I → MI , this implies that the limit is continuous and coincides with F ′
I(u)

by a standard argument on convergence of densities. We consider only the first term
in (29), the second is similar.

The convergence of Xε and its first and second derivative, together with the
non-degeneracy hypothesis imply that uniformly on t ∈ I, as ε ↓ 0
pXε(t),Xε′(t)(u, 0) → pX(t),X′(t)(u, 0). The same kind of argument can be used for
det

(
Xεt′′(t)−βεt′′(t)u

)
, on account of the form of the regression coefficients and the
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definitions of X t and βt. The only difficulty is to prove that, for fixed u:

P{Cε∆C} → 0 as ε ↓ 0, (30)

where Cε = Au(X
εt, βεt) C = Au(X

t, βt)
We prove that

a. s. 1ICε → 1IC as ε ↓ 0, (31)

which implies (30). First of all, note that the event
L =

{
sups∈I\{t}

(
X t(s) − βt(s)u

)
= 0

}
has zero probability, as already mentioned.

Second, from the definition of X t(s) and the hypothesis, it follows that , as ε ↓ 0,
Xε,t(s), βε,t(s) converge to X t(s), βt(s) uniformly on I\{t}. Now, if ω /∈ C, there
exists s̄ = s̄(ω) ∈ I\{t} such that X t(s̄) − βt(s̄)u > 0 and for ε > 0 small enough,
one has Xεt(s̄)− βεt(s̄)u > 0, which implies that ω /∈ Cε.

On the other hand, let ω ∈ C\L. This implies that

sup
s∈I\{t}

(
X t(s)− βt(s)u

)
< 0.

From the above mentioned uniform convergence, it follows that if ε > 0 is small
enough, then sups∈I\{t}

(
Xεt(s)− βεt(s)u

)
< 0, hence ω ∈ Cε. (31) follows.

So, we have proved that the limit as ε ↓ 0 of the first term in (29) is equal to the
first term in (25).

It remains only to prove that the first term in (25) is a continuous function of
u. For this purpose, it suffices to show that the function u Ã P{Au(X

t, βt)}. is
continuous. This is a consequence of the inequality∣∣∣P{Au+h(X

t, βt)}−P{Au(X
t, βt)}

∣∣∣ ≤ P
{∣∣ sup

s∈I\{t}

(
X t(s)−βt(s)u

)∣∣ ≤ |h| sup
s∈I\{t}

|βt(s)|
}

and of Theorem 4.1, applied once again to the process s Ã X t(s) − βt(s)u defined
on I\{t}.

5 Asymptotic expansion of F ′(u) for large u

Corollary 5.1 Suppose that the process X satisfies the conditions of Theorem 4.2
and that in addition E(Xt) = 0 and Var(Xt) = 1.

Then, as u → +∞ F ′(u) is equivalent to

ud

(2π)(d+1)/2
e−u2/2

∫

I

(
det(Λ(t))

)1/2
dt, (32)

where Λ(t) is the variance-covariance matrix of X ′(t).
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Proof: Set r(s, t) := E
(
X(s), X(t)), and for i, j = 1, d,

ri;(s, t) :=
∂

∂si

r(s, t); rij;(s, t) :=
∂2

∂si∂sj

r(s, t); ri;j(s, t) :=
∂2

∂si∂tj
r(s, t).

For every t, i and j ri;(t, t) = 0, Λij(t) = ri;j(t, t) = −rij;(t, t). Thus X(t) and X ′(t)
are independent. Regression formulae imply that at

s = r(s, t), βt(s) = 1−r(t,s)
n(s,t)

. This

implies that βt(t) = Λ(t) and that the possible limits values of βt(s) as s → t are in

the set {vT Λ(t)v : v ∈ Sd−1}. Due to the non-degeneracy condition these quantities
are minorized by a positive constant. On the other hand for s 6= t βt(s) > 0. This
shows that for every t ∈ I one has infs∈I βt(s) > 0. Since for every t ∈ I the process
X t is bounded it follows that a.s. 1IAu(Xt,βt) → 1 as u → +∞. Also

det
(
X t′′(t)− βt′′(t)u

) ' (−1)d det
(
Λ(t)

)
ud.

Dominated convergence shows that the first term in (25) is equivalent to

∫

I

ud det(Λt)(2π)−1/2e−u2/2(2π)−d/2
(
det(Λt)

)−1/2
dt =

ud

(2π)(d+1)/2
e−u2/2

∫

I

(
det(Λt)

)1/2
dt.

The same kind of argument shows that the second term is O
(
ud−1e−u2/2

)
which

completes the proof. ¤
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Cramér, H. and Leadbetter, M.R. (1967). Stationary and Related Stochastic
Processes, J. Wiley & Sons, New-York.

Cucker, F. and Wschebor M., (2003) On the Expected Condition Number of
Linear Programming Problems, Numer. Math., 94: 419-478.

Diebolt, J. and Posse, C. (1996). On the Density of the Maximum of Smooth
Gaussian Processes.Ann. Probab., 24, 1104-1129.

Federer, H. (1969). Geometric measure theory. Springer-Verlag, New York
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