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1 Introduction.

Let A be an m×m real matrix. We denote by

‖A‖ = sup
‖x‖=1

‖Ax‖

its Euclidean operator norm, where we denote by ‖v‖ the Euclidean norm of v ∈ Rm. If
A is non-singular, its condition number κ(A) is defined by

κ(A) =
∥∥∥A ∥∥∥ ∥∥∥A−1

∥∥∥ .
The role of κ(A) in Numerical Linear Algebra has been recognized since a long time

[9], [10], [11] as well as its importance in the evaluation of algorithm complexity [4], [6].
κ(A) measures, to the first order of approximation, the largest expansion in the relative
error of the solution of the m×m linear system of equations

Ax = b (1)

when its input is measured with error.
In other words, log2 κ(A) is the loss of precision in the solution x of (1) due to ill-

conditioning of A, measured in number of places in the finite binary expansion of x.
A natural problem is trying to understand the behaviour of κ(A) when the matrix A

is chosen at random, that is, to estimate the tail

P [κ(A) > x], for each x ∈ R+,

∗This author has been partially supported by the Spanish Ministerio de Ciencia y Tecnoloǵıa, grant BFM2002-04430-
C02-02.
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(where P is the probability defined on the probability space in which A is defined) or the
moments of the random variable κ(A). Of course, a priori this will depend on the meaning
of “choosing A at random”, that is, which is the probability distribution of A. A typical
result is the following:

Theorem 1 (Edelman, 1988) Let A = (ai,j)i,j=1,...,m and assume that the ai,j’s are
i.i.d. Gaussian standard random variables. Then:

E {log κ(A)} = logm+ C0 + εm, (2)

where C0 is a konwn constant (C0
∼= 1, 537) and εm → 0 as m→ +∞.

In [3] one can find some elementary inequalities for the moments of log κ(A) when
the entries of A are i.i.d. but not necessarily Gaussian. In a recent paper [7] bounds for
P [κ(A) > x] are given when the ai,j’s are i.i.d. Gaussian with a common variance but
may be non-centered (this has been called “smoothed analysis”). More precisely:

Theorem 2 (Sankar, Spielman, Teng, 2002) Assume ai,j = mi,j+gi,j (i, j = 1, ...,m)
where the gi,j’s are i.i.d. centered Gaussian with common variance σ2 ≤ 1 and the (non
random) matrix

M = (mi,j)i,j=1,...,m

verifies ‖M‖ ≤ m
1
2 .

Then, there exists x0 such that, if x > x0, then

P [κ(A) > x] ≤
4.734m

(
1 + 4 (log x)

1
2

)
xσ

. (3)

Remark 3 There are a couple of differences between this statement and the actual state-
ment in [7]. The first one is that instead of 4.734 their constant is 3.646, apparently due to
a mistake in the numerical evaluation. The second one, their hypothesis is supi,j |mi,j| ≤ 1

instead of ‖M‖ ≤ m
1
2 , which they actually use in their proof and is not implied by the

previous one. Finally, the inequality from [8], which is applied in their proof, does not
apply for every x > 0.

If one denotes λ1, ....λm, 0 ≤ λ1 ≤ .... ≤ λm, the eigenvalues of the matrix AtA (At

stands for the transpose of A), then

κ(A) =

(
λm
λ1

) 1
2

=
(
MA

mA

) 1
2

,

where

MA = max
‖x‖=1

f(x); mA = min
‖x‖=1

f(x); f(x) = xtAtAx (x ∈ Rm).
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Hence, it is possible to study the random variable κ(A) using techniques related to
extrema of random fields. More precisely, if a > 0:

P [MA > a] = P [M+(X, a) ≥ 2] ≤ 1

2
E

{
M+(X, a)

}
, (4)

where, if Sm−1 is the unit sphere in the m-dimensional euclidean space, then X is the
real-valued random field

X = f | Sm−1

and

M+(X, a) = #
{
x : x ∈ Sm−1, X has a local maximum at the point x and X(x) > a

}
(Note that since f is an even function, {MA > a} occurs if and only if {M+(X, a) ≥ 2}.

The main point in making inequality (4) a useful tool is that the expectation in the
right-hand side member can be computed - or at least estimated - using Rice formula for
the expectation of the number of critical points of the random field X ′ (the derivative of
X).

In fact, we will only use an upper bound for E {M+(X, a)}, as will be explained below.
The upper bound thus obtained for P [MA > a] will be one of the tools to prove Theorem
11 which contains a variant of (3) that implies an improvement if x is large enough.
However Conjecture 1 in [7] which states that P [κ(A) > x] ≤ O( m

xσ
) remains an open

problem.
Standard computations permit to deduce inequalities for the moments of log κ(A).

This also leads to an alternative proof of a weak version of Edelman’s Theorem, which
instead of (2) states that

E {log κ(A)} ≤ logm+ C (5)

for some constant C.

Rice formulae for the moments of the number of zeros of a random field can be applied
in some other related problems, which are in fact more complicated than the one we are
adressing here. In [3] this is the case for condition numbers in linear programming. We
briefly sketch one of the results in this paper.

Consider the system of inequalities

Ax < 0 (6)

where A is an n × m real matrix, n > m, and y < 0 denotes that all the coordinates
of the vector y are negative. In [1] the following condition number was defined, for the
(feasibility) problem of determining wheather the set of solutions of (6) is empty or not.

Denote by at1, ...., a
t
n the rows of A,

fk(x) =
atkx

‖ak‖
(k = 1, ..., n), D(A) = min

x∈Sm−1
max
1≤k≤n

fk(x).
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Cheung-Cucker condition number is

C(A) = |D(A)|−1 ,

with the convention C(A) = +∞ when D(A) = 0. [2] contains the following result:

Theorem 4 Assume that

m(1 + log n)

n
≤ 1.

If ai,j, , i = 1, ..., n, j = 1, ...,m are i.i.d. Gaussian standard random variables, then

E {log C(A)} ≤ max (logm, log log n) +K, (7)

where K is a constant.

To prove (7) one can also use a method based upon the formulae on extrema of random
fields, since the problem consists in giving fine bounds for the probability

P
[∣∣∣∣ min
x∈Sm−1

Z(x)
∣∣∣∣ < b

]
,

where Z(x) = max1≤k≤n fk(x) and b is a (small) positive number.
The difference between the proof of Theorem 4 and the study of κ(A) for square

matrices is that in the latter case the random function X that is to be considered is the
restriction of a quadratic form to the unit sphere, hence a nice regular function, while the
study of the local extrema of Z is complicated. This is due to the fact that x→ Z(x) is
a non-differentiable piecewise affine function.

2 Technical preliminaries.

In this section, Bm−1(0, δ) is the Euclidean ball centered at the origin with radius δ in
Rm−1, |Bm−1(0, δ)| is its Lebesgue measure, σm−1 the (m − 1)-dimensional geometric
measure in Sm−1 and T ≺ 0 denotes that the bilinear form T is negative definite.

Proposition 5 (Kac’s formula) Let F : Sm−1 → R be a C2 function. Denote:

M+(F, a) =
{
x : x ∈ Sm−1, F has a local maximum at the point x and F (x) > a

}
,

M+(F, a) = #
[
M+(F, a)

]
.

We assume that

{
x : x ∈ Sm−1, F ′(x) = 0, det(F ′′(x)) = 0

}
= φ (8)

i.e. that there are no critical points of F in which F ′′ is singular.
Then,

4



M+(F, a) = lim
δ↓0

1

|Bm−1(0, δ)|
∫
Sm−1

|det(F ′′(x))| 1{‖F ′(x)‖<δ,F ′′(x)≺0,F (x)>a}σm−1(dx) (9)

Proof. The hypothesis implies that the points of M+(F, a) are isolated, hence, that
M+(F, a) is finite. Put

M+(F, a) = {x1, ...., xN} .
Then, for j = 1, ..., N :

F ′(xj) = 0; F ′′(xj) ≺ 0.

If δ0 is small enough, using the inverse function theorem, there exist pairwise disjoint
open neighbourhoods U1, ..., UN in Sm−1 of the points x1, ..., xN respectively, such that
for each j = 1, ..., N the map x→ F ′(x) is a diffeomorphism between Uj and Bm−1(0, δ0)
and

N⋃
j=1

Uj =
{
x : x ∈ Sm−1, ‖F ′(x)‖ < δ0, F ′′(x) ≺ 0, F (x) > a

}
.

Using the change of variable formula,∫
Uj

|det(F ′′(x))|σm−1(dx) = |Bm−1(0, δ0)| ,

it follows that

N |Bm−1(0, δ0)| =
∫
⋃N

j=1
Uj

|det(F ′′(x))|σm−1(dx)

=
∫
Sm−1

|det(F ′′(x))|{‖F ′(x)‖<δ0,F ′′(x)≺0,F (x)>a} σm−1(dx).

This proves (9).

Suppose now that X(x) = xtAtAx, A = (ai,j)i,j=1,...,m, x ∈ Rm and introduce the
following notations: for x ∈ Sm−1, let {e1, ..., em} be an orthonormal basis of Rm such that
e1 = x. We denote Ax = (axi,j)i,j=1,...,m the matrix associated to the linear transformation
in Rm defined by y → Ay, when one takes {e1, ..., em} as reference basis.

Put also Bx = (Ax)tAx = (bxi,j)i,j=1,...,m, bxi,j =
∑m

h=1 a
x
h,ia

x
h,j.

Direct computations show that:

X(x) = bx1,1 (10)

X ′(x) = 2
(
bx2,1, ...., b

x
m,1

)t
(11)
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X ′′(x) = 2


 bx2,2 − bx1,1 .... bx2,m

... .... ....
bxm,2 ... bxm,m − bx1,1


 = 2(Bx

2,2 − bx1,1Im−1) (12)

(Im−1 is the (m− 1) × (m− 1) identity matrix).

In the rest of this paper, G = (gi,j)i,j=1,...,m will denote a random matrix with i.i.d.

Gaussian entries and common variance σ2 and A = (ai,j)i,j=1,...,m, where ai,j = gi,j +mi,j

and M = (mi,j)i,j=1,...,m is a nonrandom matrix.

Since our interest is in studying κ(A), the fact that κ( 1
σ
A) = κ(A), for every σ �= 0,

implies that we may assume that σ = 1 if we replace the expected matrix M by 1
σ
M .

The next proposition is a variant of a known inequality (Lemma 2.8 in [8] and references
therein). We give here an independent proof.

Proposition 6 Assume G = (gi,j)i,j=1,...,m where the gi,j’s are i.i.d. random variables,
each one having standard Gaussian probability distribution. Assume m ≥ 3.

Then, for each a ≥ 4 one has

P
[
‖G‖ ≥ a

√
m

]
≤ C1(a)√

m
exp

[
−1

4
a2m

]
, (13)

where C1(a) = 36
√

2e2

7a3
√
π
≤ 36

√
2e2

437
√
π

= C1 ≈ 0.47375...

Proof. Step 1.
We consider the quadratic form defined on Rm:

fG(x) = xtGtGx.

We have, for t > 0:

P
[
‖G‖2 > t

]
≤ 1

2
E

{
M+(fG, t)

}
. (14)

To be able to apply Proposition 5 to M+(fG, t) we need to check condition (8). One
way to do this is to use Proposition 4 in [2], applying it to the random vector field V = f ′G
since the random variable f ′G(x) has a bounded density in Rm−1. One can conclude that
almost surely formula (9) holds true for F = fG.

Step 2.
For each x ∈ Sm−1 let us compute the joint distribution of fG(x) and f ′G(x) in R×Rm−1.
Note first that due to the invariance under linear isometries, this joint distribution is

the same for all x ∈ Sm−1. We compute it for x = w = (1, 0, ..., 0)t. Notice that, in this
case Aw = A, Bw = B, ...

Conditionally on (g1,1, ..., gm,1), fG(w) is constant and equal to b1,1 =
∑m

h=1 g
2
h,1 and

the random variables

bi,1 =
m∑
h=1

gh,igh,1 (i = 2, ...,m)
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are independent, each one being Gaussian centered with variance b1,1.
So, since the distribution of b1,1 is χ2 with m degrees of freedom and on account of

(10) and (11), the joint density of fG(w) and f ′G(w) is equal to:

pfG(w),f ′
G(w)(y, z) = χ2

m(y)
exp

[
−1

2
‖z‖2

4y

]
(2π)

m−1
2 2m−1y

m−1
2

=
1

2
3m
2

−1Γ(m
2
)(2π)

m−1
2

exp
[
−1

2

(
y + ‖z‖2

4y

)]
√
y

(15)

On the other hand, using Step 1 and Proposition 5, we obtain:

2P (‖G‖2 > t)

≤ E

{
lim
δ↓0

1

|Bm−1(0, δ)|
∫
Sm−1

|det(f ′′G(x))| 1{‖f ′
G(x)‖<δ,f ′′

G(x)≺0,fG(x)>t}σm−1(dx)

}

≤
∫ +∞

t
dy

∫
Sm−1

E
{
|det(f ′′G(x))| 1f ′′

G(x)≺0/fG(x) = y, f ′G(x) = 0
}
pfG(x),f ′

G(x)(y, 0) σm−1(dx)

= σm−1(S
m−1)

∫ +∞

t
E

{
|det(f ′′G(w))| 1f ′′

G(w)≺0/fG(w) = y, f ′G(w) = 0
}
pfG(w),f ′

G(w)(y, 0)dy,

In the last equality we have used again the fact that the law of the random field
{fG(x) : x ∈ Sm−1} is invariant under a linear isometry of Rm.

Substituting the density from (15) and taking into account that

σm−1(S
m−1) =

2π
m
2

Γ(m
2
)
,

we obtain:

P (‖G‖2 > t)

≤ 2
√

2π[
2mΓ(m

2
)
]2

∫ +∞

t
E

{
|det(f ′′G(w))| 1f ′′

G(w)≺0/(b1,1, ..., bm,1) = (y, 0, ..., 0)
} exp

[
−y

2

]
√
y

dy

(16)

Step 3.
From the expression (12) for f ′′G(w), since B2,2 is positive definite we have that:

|det (f ′′G(w))| 1{f ′′
G(w)≺0} ≤ (2b1,1)

m−1 1{f ′′
G(w)≺0} ≤ (2b1,1)

m−1 .

Replacing in the integrand in (16) we get:

P
[
‖G‖2 > t

]
≤

√
2π

2m
[
Γ(m

2
)
]2

∫ +∞

t
ym− 3

2 exp
[
−y

2

]
dy =

√
2π

2m
[
Γ(m

2
)
]2Jm(t).
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For the remaining, we use the inequalities:

Γ
(
m

2

)
≥

(
m

2
− 1

)m
2
−1

exp
[
−m

2
− 1

] √
2π

(
m

2
− 1

)

and

Jm(t) ≤ 2tm− 3
2

(
1 +

1

8
+ ...+

(
1

8

)m−1
)

exp
[
− t

2

]
≤ 16

7
tm− 3

2 exp
[
− t

2

]
,

the second one valid for t ≥ 16m.
So, if a ≥ 4:

P
[
‖G‖2 > a2m

]
≤ e2

4

(
2

π

)1/2 em

(m− 2)m−1

16

7
(a2m)m− 3

2 exp

[
−a

2m

2

]

=
4
√

2e2

7a3
√
πm

(ea2)m
(
1 +

2

m− 2

)m−1

exp

[
−a

2m

2

]

≤ 36
√

2e2

7a3
√
πm

(ea2)m exp

[
−a

2m

2

]

≤ 36
√

2e2

7a3
√
πm

exp

[
−m

(
a2

2
− 1 − log(a2)

)]

≤ 36
√

2e2

7a3
√
π

1√
m

exp

[
−a

2m

4

]
.

which is the inequality in the statement.

Next we obtain an upper bound for the tail probabilities P [‖A−1‖ > x]. This was done
in Theorem 3.2 in [7] .We include here a proof that in fact uses their technique and also
provides a slight improvement in the numerical constant.

We will employ the following lemma.

Lemma 7 (Lemma 3.1, [7]) Assume that A = (ai,j)i,j=1,...,m, ai,j = mi,j + gi,j (i, j =
1, ...,m), where the gi,j’s are i.i.d. standard Gaussian r.v.’s. Let v ∈ Sm−1. Then

P
[∥∥∥A−1v

∥∥∥ > x]
<

(
2

π

)1/2 1

x
.

Lemma 8 Let U = (U1, ..., Um) be an m-dimensional vector chosen uniformly on Sm−1

and let tm−1 be a real valued r.v. with a Student distributon with m−1 degrees of freedom.
Then, if c ∈ (0,m), we have that

P
[
U2

1 >
c

m

]
= P

[
t2m−1 >

m− 1

m− c c
]
.
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Proof. Let V = (V1, ..., Vm) be a m-dimensional random vector with standard Gaussian
distribution. We can assume that

U =
V

‖V ‖ .

Let us denote, to simplify the notation K = V 2
2 + ...+ V 2

m. Then the statement

V 2
1

V 2
1 +K

>
c

m

is equivalent to that

V 2
1

K
>

c

m− c,

and we have that

P
[
U2

1 >
c

m

]
= P

[
(m− 1)V 2

1

K
>
m− 1

m− c c
]

= P
[
t2m−1 >

m− 1

m− c c
]
,

where tm−1 is a real valued r.v. having Student’s distribution with m − 1 degrees of
freedom.

Proposition 9 Assume that A = (ai,j)i,j=1,...,m, ai,j = mi,j + gi,j (i, j = 1, ...,m), where
the gi,j’s are i.i.d. standard Gaussian r.v.’s and M = (mi,j)i,j=1,...,m is non random.

Then, for each x > 0 :

P [‖A−1‖ ≥ x] ≤ C2(m)
m1/2

x
, (17)

where

C2(m) =
(

2

π

)1/2
(

sup
c∈(0,m)

√
cP

[
t2m−1 >

m− 1

m− c c
])−1

≤ C2(∞) = C2 ≈ 2.34737...

Proof. Let U be an n-dimensional random vector, independent of A with uniform distri-
bution on Sm−1.

Aplying Lemma 7 we have that

P
[
‖A−1U‖ > x

]
= E

{
P

[
‖A−1U‖ > x

/
U

]}
≤

(
2

π

)1/2 1

x
. (18)

Now, since if wA satisfies that ‖A−1wA‖ = ‖A−1‖, and ‖u‖ = 1, then,

‖A−1u‖ ≥ ‖A−1‖ × | < wA, u > |,
we have that, if c ∈ (0,m), then
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P

[
‖A−1U‖ ≥ x

(
c

m

)1/2
]
≥ P

[{
‖A−1‖ ≥ x

}
and

{
| < wA, U > | ≥

(
c

m

)1/2
}]

= E

{
P

[{
‖A−1‖ ≥ x

}
and

{
| < wA, U > | ≥

(
c

m

)1/2
}/

A

]}

= E

{
I{‖A−1‖≥x}P

[
| < wA, U > | ≥

(
c

m

)1/2
/
A

]}

= E
{
I{‖A−1‖≥x}P

[
t2m−1 >

m− 1

m− c c
]}

= P
[
t2m−1 >

m− 1

m− c c
]
P [‖A−1‖ ≥ x].

where we have applied Lemma 8. From here and (18) we have that

P [‖A−1‖ ≥ x] ≤ 1

P
[
t2m−1 >

m−1
m−c

c
] (

2

π

)1/2 1

x

(
m

c

)1/2

.

To end the proof notice that, if g is a standard Gaussian random variable, then

sup
c∈(0,m)

c1/2P
[
t2m−1 >

m− 1

m− c c
]

≥ sup
c∈(0,1)

c1/2P
[
t2m−1 >

m− 1

m− c c
]

(19)

≥ sup
c∈(0,1)

c1/2P
[
t2m−1 > c

]

≥ sup
c∈(0,1)

c1/2P
[
g2 > c

]

≥ 0.5651/2P
[
g2 > 0.565

]
= 0.3399.

Remark 10 Explicit expressions for C2(m) don’t seem to be easy to obtain. There-
fore, we have carried out some numerical computations with MatLab in order to have
approximations to this value.

In the following table we include the results.

Table 1. Optimal values for C2(m) and values of c in which they are reached.

m 3 4 5 10 25 50 100 ∞
C2(m) 1.879 2.038 2.086 2.244 2.309 2.328 2.338 2.347
c 1.146 0.923 0.823 0.672 0.604 .584 0.574 0.565

Notice from the table that restriction in (19) to that c ∈ (0, 1) is not important as long
as m ≥ 4.
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3 Main results.

Theorem 11 Assume that A = (ai,j)i,j=1,...,m, ai,j = mi,j + gi,j (i, j = 1, ...,m), where
the gi,j’s are i.i.d. centered Gaussian with common variance σ2 and M = (mi,j)i,j=1,...,m

is non random. Let m ≥ 3. If log x ≥ 4m one has:

P [κ(A) > x] ≤ 1

x

[
C1√
m

+ C2(m)
√
m
‖M‖
σ

+ C2(m)
√

4m (log x)
1
2

]
, (20)

where C1 and C2(m) were defined in Propositions 6 and 9 respectively.

Proof. As we noticed above, we may assume that σ = 1 and replace the matrix M by
1
σ
M . Put G = (gi,j)i,j=1,...,m. From Proposition 6, if a ≥ 4 :

P
[
‖A‖ > 1

σ
‖M‖ + a

√
m

]
≤ P

[
‖G‖ > a

√
m

]
≤ C1√

m
exp

[
−a

2m

4

]
.

Using also Proposition 9:

P [κ(A) > x] ≤ P
[
‖A‖ > 1

σ
‖M‖ + a

√
m

]
+ P

[∥∥∥A−1
∥∥∥ > x

σ−1 ‖M‖ + a
√
m

]

≤ C1√
m

exp

[
−a

2m

4

]
+
C2(m)

√
m

x

(
‖M‖
σ

+ a
√
m

)
.

Putting

a =

√
4 log x

m

the result follows.

Corollary 12 With the notations and hypotheses of Theorem 11, m ≥ 3, for any x large
enough

P (κ(A) > x) ≤ H

√
m

x

[
1

m
+

‖M‖
σ

+ (log x)
1
2

]
.

where H is a constant.

Proof. Apply Theorem 11.

One can also use Propositions 6 and 9 to get bounds for the moments of log κ(A). For
example we can obtain the following corollary:

Corollary 13 With the notations and hypotheses of Theorem 11. If m ≥ 3, then

E {log κ(A)} ≤ log(m) + 1 + logC2 + log

(
‖M‖
σ
√
m

+ 4

)
+
C1

2m
exp [−4m] .
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Proof. We may assume that σ = 1 and replace the matrix M by 1
σ
M . Let β =

log (C2

√
m). Applying Proposition 9, we have that

E
{
log

∥∥∥A−1
∥∥∥}

≤ β +
∫ ∞

β
P

[∥∥∥A−1
∥∥∥ > ex]

≤ β + C2

√
me−β = log

(
C2

√
m

)
+ 1. (21)

Now, let γ = log
(
‖M‖
σ

+ 4
√
m

)
. Notice that, if x ≥ γ, then

(
ex − ‖M‖

σ

)
≥ 4

√
m.

Therefore, applying Proposition 6 we obtain

E {log ‖A‖} ≤ γ +
∫ ∞

γ
P [‖A‖ > ex] dx

≤ γ +
∫ ∞

γ
P

[
‖G‖ > ex − ‖M‖

σ

]
dx

≤ γ +
C1√
m

∫ ∞

γ
exp


−1

4

(
ex − ‖M‖

σ

)2

 dx.

From here, if we make the change of variable y = ex − ‖M‖
σ

, we obtain that

E {log ‖A‖} ≤ γ +
C1√
m

∫ ∞

4
√
m

exp
(
−1

2
y2

)
dy

≤ γ +
C1

2m
exp (−4m) .

And the corollary follows from here and (21).

Putting M = 0, σ = 1, the last Corollary provides a weak version of Edelman’s
Theorem of the form (5).
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