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Abstract

In this paper we obtain some bounds for the expectation of the logarithm of the condition number
of a random matrix whose elements are independent and identically distributed random variables.

We also include some examples and extensions to cover the smoothed analysis as well higher order
moments.
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1 Introduction.

Let A = (ai,j)i,j=1,...,n be a real n× n non singular matrix. We denote by

‖A‖ = sup
‖x‖=1

‖Ax‖ (1)

the operator norm of A, where in the right-hand member of (1), “‖ · ‖” is the euclidean
norm in IRn.

Define the condition number of A by

∗This author has been partially supported by the Spanish Ministerio de Ciencia y Tecnoloǵıa, grant BFM2002-04430-
C02-02.
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K(A) = ‖A‖ × ‖A−1‖. (2)

The role of K(A) in numerical analysis -and specially in numerical linear algebra- has
been recognized since a long time ([6], [7]. See also [3] and references therein).

In practice, it is useful to consider that the matrices we have to deal with are obtained
in a random way (see [1], [2], [4] and [5]). We will assume that {ai,j}i,j=1,...,n are inde-
pendent and identically distributed (i.i.d.) random variables (r.v.’s) defined on the same
probability space (Ω, σ, ν) where the common distribution of {ai,j}i,j=1,...,n depends on the
kind of problem under consideration.

When the matrix A is random, a certain number of natural questions about com-
plexity of algorithms and effects of round-off errors leads to the study of the probability
distribution of the random variable logK(A) (Note that K(A) ≥ 1 for any matrix A) .

In what follows, we state and prove some elementary inequalities for the expectation
and higher order moments of logK(A), under quite general conditions on the randomness
of A.

In the next section (Theorem 2.2) we prove the inequality for E [logK(A)] which con-
stitutes the main result of this paper. In Section 2 we present some applications and
possible extensions of Theorem 2.2 including the bounds for higher order moments of
logK(A).

2 Main result.

The proof employs the following simple a very well known identity.

Lemma 2.1 If X is a positive random variable defined on the probability space (Ω, σ, ν),
then

E[X] =
∫ ∞

0
ν[X > t]dt.

Theorem 2.2 Assume that ai,j, i, j = 1, ...n are independent and identically distributed
random variables and that their common probability distribution P satisfies the following
conditions

1. For any pair α, β of real numbers, α < β, one has

P

(
[α, β]

)
≤ P

([
−β − α

2
,
β − α

2

])
. (3)

2. E [|a1,1|r] =
∫ ∞
−∞ |x|rP (dx) = 1, for some r > 0.

3. There exist positive numbers C, γ such that

P ([−α, α]) ≤ Cαγ, for all α > 0.
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Then

E[logK(A)] ≤
(
1 +

2

r

)
log n+

1

r
+

1

γ

{[
(2 + γ) log n+ logC

]
+ + 1

}
, (4)

where x+ = max(x, 0) for real x.

PROOF.- Note that ‖A‖ ≤
(∑n

i,j=1 a
2
i,j

)1/2
. So, with the only assumption that the r.v.’s

are i.d., for t > 0

ν [‖A‖ > t] ≤ ν

[
n2 sup

i,j=1,...n
a2

i,j > t
2

]

≤ ν


 n⋃

i,j=1

{
|ai,j| >

t

n

}
 ≤ n2ν

[
|a1,1| >

t

n

]
. (5)

Hence, applying Lemma 2.1, for αn ≥ 0

E[log ‖A‖] ≤ αn +
∫ ∞

αn

ν[log ‖A‖ > x]dx

= αn +
∫ ∞

αn

ν[‖A‖ > ex]dx

≤ αn +
∫ ∞

αn

n2ν
[
|a1,1| >

ex

n

]
dx

≤ αn +
∫ ∞

αn

n2
(
n

ex

)r

dx = αn + n2+r 1

r
e−rαn , (6)

where the last inequality follows from Markov’s inequality and assumption 2.
Now choose αn ≥ 0 to minimize the right-hand member of (6), i.e.

αn =
(
1 +

2

r

)
log n

and it follows that

E[log ‖A‖] ≤
(
1 +

2

r

)
log n+

1

r
. (7)

Let us now consider the term ‖A−1‖. Denote A−1 = (bi,j)i,j=1,...,n. Thus

bi,j =
ai,j

det(A)
, i, j = 1, ..., n,

where ai,j is the adjoint of the position (i, j) in the matrix A.
Clearly the r.v.’s |bi,j|, i, j = 1, .., n are i.d. and, so, we may apply (5) to the matrix

A−1 instead of A thus obtaining
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ν
[
‖A−1‖ > t

]
≤ n2ν

[
|b1,1| >

t

n

]
= n2ν

[∣∣∣∣∣ a1,1∑n
j=1 a1,ja1,j

∣∣∣∣∣ > t

n

]

= n2ν




∣∣∣∣∣∣a1,1 +
n∑

j=2

a1,j
a1,j

a1,1

∣∣∣∣∣∣ <
n

t


 .

The r.v.’s

a1,1 and η =
n∑

j=2

a1,j
a1,j

a1,1

are independent, so that, for each α > 0, denoting by Pη the probability distribution of
η, and using Fubini’s theorem and assumption 1, we have

ν [|a1,1 + η| < α] =
∫ ∞

−∞
P [(−α− y, α− y)]Pη(dy)

≤
∫ ∞

−∞
P [(−α, α)]Pη(dy) = P [(−α, α)].

Hence, by assumption 3,

ν
[
‖A−1‖ > t

]
≤ n2P

([
−n
t
,
n

t

])
≤ n2C

(
n

t

)γ

, (8)

and, with βn ≥ 0:

E[log ‖A−1‖] ≤ βn +
∫ ∞

βn

ν
[
‖A−1‖ > ex

]
dx

≤ βn +
∫ ∞

βn

Cn2+γe−γxdx = βn + C
n2+γ

γ
e−γβn .

Choosing

βn =
1

γ
[(2 + γ) log n+ logC]+,

one obtains

E[log ‖A−1‖] ≤ 1

γ

{
[(2 + γ) log n+ logC]+ + 1

}
, (9)

and putting together (7) and (9), (4) is obtained.

•

Next we discuss briefly the assumptions in Theorem 2.2

Remark 2.2.1 It is not too difficult to show that assumption 1 implies that P is sym-
metric around 0. Therefore, if the r.v.’s ai,j, i, j = 1, .., n are integrable, their common
expectation must be 0.
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Remark 2.2.2 Since K(λA) = K(A) for any real number λ and any nonsingular matrix
A, in case mr =

∫ ∞
−∞ |x|rP (dx) < ∞ it is possible to replace A by m−1/r

r A so that
assumption 2 holds without modifying the condition number. Of course in this case one
must change accordingly the constant C in assumption 3.

In this sense, assumption 2 is not more restrictive than the finiteness of the r-th moment
of the probability measure P .

3 Examples and extensions.

2.1 Assume that P has a density function f , that f is even and non-increasing on [0,∞)
and that mr =

∫ ∞
−∞ |x|rf(x)dx <∞ for some r > 0.

We replace the original density f by m1/r
r f(m1/r

r x) so that assumption 2 is satisfied
without changing K(A); assumption 3 is verified with γ = 1 and C = 2m1/r

r f(0). Inequal-
ity (4) becomes

E[logK(A)] ≤
(
1 +

2

r

)
log n+

1

r
+

[
3 log n+

1

r
logmr + log(2f(0))

]+

+ 1. (10)

•

2.2 Consider the example in which P is the uniform distribution on [−H,H], H > 0.
In this case, mr = Hr(r + 1)−1 and (10) holds true for any r > 0. Letting r → +∞, we
obtain

E[logK(A)] ≤ 4 log n+ 1. (11)

•

2.3 (Strong concentration near the mean) Here we analyze a family of distributions sup-
ported by [−1, 1] but more concentrated around 0 as the uniform is. Assume that the
density has the form

1

2

γ

|x|1−γ
1[−1,1](x),

for some γ, 0 < γ < 1.
One has mr = γ

r+γ
for each r > 0 and easily checks that introducing the modification

suggested in 2.1 above, assumptions 1, 2 and 3 are satisfied with C = mγ/r
r . Hence,

Theorem 2.2 implies that for any r > 0

E[logK(A)] ≤
(
1 +

2

r

)
log n+

1

r
+

1

γ




[
(2 + γ) log n+

γ

r
log

γ

r + γ

]+

+ 1


 ,

and, letting r → ∞ it follows that

5



E[logK(A)] ≤
(

2 +
2

γ

)
log n+

1

γ
.

Notice that in this case, as γ < 1 the bound we obtain is worse than (11).

•

2.4 The bound in Theorem 2.2 can be improved by using the actual distribution P instead
of the Markov inequality in (6) or the bound in (8). This is, for example, the case for
symmetric exponential or standard Gaussian distributions but we will not pursue the
subject here. In the later case, the precise behavior of E[logK(A)] as n→ ∞ is given in
[5] as

E[logK(A)] = log n+ C0 + o(1),

where C0 is a known constant.

•

2.5 (“Smoothed analysis”) We consider now the condition number when the r.v.’s in the
matrix A = (ai,j)i,j=1,...,n have the form

ai,j = µi,j + ψi,j, i, j = 1, ..., n,

where M = (µi,j)i,j=1,...,n is non-random and (ψi,j)i,j=1,...,n are i.i.d. r.v.’s with common
distribution P satisfying assumptions 1, 2 and 3 in Theorem 2.2. This -and other similar
studies- have recently been called “smoothed analysis” (see [1] and [4]).

Theorem 3.1 Under the conditions stated above, if

µn = sup
i,j=1,...,n

|µi,j| ≤ n2/r,

then

E[logK(A)] ≤
(
1 +

2

r

)
log n+ log 2 +

1

r
+

1

γ

{[
(2 + γ) log n+ logC

]
+ + 1

}
(12)

PROOF.- The proof (as well as the result) is very similar to that of Theorem 2.2. For
t > 0 one has:

ν [‖A‖ > t] ≤ ν


 n∑

i,j=1

a2
i,j > t

2


 ≤

n∑
i,j=1

ν

[
a2

i,j >
t2

n2

]

=
n∑

i,j=1

ν
[
|µi,j + ψi,j| >

t

n

]
≤ n2ν

[
|ψ1,1| >

t

n
− µn

]
.
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Now choose αn =
(
1 + 2

r

)
log n+ log 2 and check that if x > αn, then

ex

n
− µn >

1

2n
ex.

Thus,

E[log ‖A‖] ≤ αn +
∫ ∞

αn

ν [‖A‖ > ex] dx

≤ αn + n2
∫ ∞

αn

ν
[
|ψ1,1| >

1

2n
ex

]
dx

≤ αn + n2
∫ ∞

αn

1(
1
2n
ex

)r dx

=
(
1 +

2

r

)
log n+ log 2 +

1

r
,

where last equality follows from a simple computation.
On the other hand, with the same notation as in the proof of Theorem 2.2, A−1 =

(bi,j)i,j=1,...,n and

ν
[
‖A−1‖ > t

]
≤

n∑
i,j=1

ν
[
|bi,j| >

t

n

]
.

For each term in this sum it is possible to repeat exactly the same computations as in

the proof of Theorem 2.2 to bound ν
[
|b1,1| > t

n

]
and obtain the same bound as there for

E[log ‖A−1‖]. This finishes the proof.

•

2.6 (Higher order moments) Is it possible to obtain upper bounds for E
[
(logK(A))k

]
, k =

2, 3, ... much in the same way as we did for k = 1. We consider here the centered case,
for smoothed analysis, the situation is similar.

Since logK(A) ≥ 0 we have that

E
[
(logK(A))k

]
≤ 2k

[
E

{(
log+ ‖A‖

)k
}

+ E
{(

log+ ‖A−1‖
)k

}]
.

Using the same estimates as in the case k = 1 for the tails of the probability distribu-
tions of ‖A‖ and ‖A−1‖, after an elementary computation, it is possible to obtain that if
k ∈ IN satisfies that 2 ≤ k ≤ 1 + (2 + γ ∧ r) log n, then

E
[
(logK(A))k

]
≤ (2 log n)k


(

1 +
2

r

)k

(1 + k) +

(
1 +

2

γ

)k

(1 + Ck)




•

7



References

[1] Blum, A. and Dunagan, J. (2002). Smoothed Analysis of the Perceptron Algorithm
for Linear Programming. S.O.D.A.

[2] Castro, D.; Montaña, J.L.; Pardo, L.M. and San Mart́ın, J. (2002), The Distribu-
tion of Condition Numbers of Rational Data of Bounded Bit Length. Foundat. of
Computat. Math., 2, 1-52.

[3] Cucker, F. (2002). Real Computations with Fake Numbers. J. of Complexity, 18,
104-134.

[4] Dunagan, J,; Spielman, D.A. and Teng, S. (2002). Smoothed Analysis of Renegar’s
Condition Number of Linear Programming. Preprint.

[5] Edelman, A. (1988). Eigenvalues and condition numbers of random matrices. SIAM
J. of Matrix Anal. and Applicat., 9, 543-556.

[6] Turing, A. (1948). Rounding-off errors in matrix processes. Quart. J. Mech. Appl.
Math. 1, 287-308.

[7] von Neuman, J. and Goldstine, H. (1947). Numerical inverting matrices of high order.
Bull. Amer. Math. Soc.. 53, 1021-1099.

8


