Probab. Theory Relat. Fields (2000)
Digital Object Identifier (DOI) 10.1007/s004400000102

Jean-Marc Azes - Mario Wschebor

On the regularity of the distribution
of the maximum of one-parameter
Gaussian processes

Received: 14 May 1999 / Revised version: 18 October 1999 /
Published online: 14 December 200Q5-Springer-Verlag 2000

Abstract. The main result in this paper states that if a one-parameter Gaussian process has
C% paths and satisfies a non-degeneracy condition, then the distribution of its maximum on
a compact interval is of class*. The methods leading to this theorem permit also to give
bounds on the successive derivatives of the distribution of the maximum and to study their
asymptotic behaviour as the level tends to infinity.

1. Introduction and main results

Let X = {X; : ¢t € [0, 1]} be a stochastic process with real values and continuous
paths defined on a probability spa@e, J, P). The aim of this paper is to study
the regularity of the distribution function of the random variable= max{X; :
t € [0, 1]}.

X is said to satisfy the hypothest,, k a positive integer, if:

(1) X is Gaussian;

(2) a.s.X has C* sample paths;

(3) For everyinteget > 1 and any set, ..., t,, of pairwise different parameter
values, the distribution of the random vector:

k k
Xigooon Xo Xpps oo Xp s X0 s XY

is non degenerate.

We denoten(r) andr(s, t) the mean and covariance functionsf that is

i+j P

m(t) = E(X;),r(s,t) = E((XS —m(s))(X; — m(t))) andr;; = dz'_d;/r i j=
0, 1, ..) the partial derivatives of, whenever they exist.

Our main results are the following:
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Theorem 1.1. Let X = {X, : t € [0, 1]} be a stochastic process satisfyirity.
Denote byF (u) = P(M < u) the distribution function oM.

Then,F is of classC* and its succesive derivatives can be computed by repeated
application of Lemma 3.3.

Corollary 1.1. Let X be a stochastic process verifyittfp;, and assume also that
E(X;) =0andVar(X;) = 1.
Then, ast — +oo, F® (u) is equivalent to

k 1
(DR /0 (e, 0. 1)

The regularity of the distribution oM has been the object of a number of
papers. For general results whEiis Gaussian, one can mention:Ylvisaker (1968);
Tsirelson (1975); Weber (1985); Lifshits (1995); Diebolt and Posse (1996) and
references therein.

Theorem 1.1 appears to be a considerable extension, in the context of one-
parameter Gaussian processes, of existing results on the regularity of the distribution
of the maximum which, as far as the authors know, do not go beyond Lipschitz con-
dition for the first derivative. For example, it implies that if the process is Gaussian
with ¢°° paths and satisfies the non-degeneracy condition for every k2, . ..,
then the distribution of the maximum48>. The same methods provide bounds for
the successive derivatives as well as their asymptotic behaviour as their argument
tends to+oo (Corollary 1.1).

Except in Theorem 3.1, which contains a first upper bound for the density of
M, we will assumeX to be Gaussian.

The proof of Theorem 1.1 is based upon the main Lemma 3.3. Before giving
the proofs we have stated Theorem 3.2 which presents the result of this Lemma in
the special case leading to the first derivative of the distribution functidd.cks
applications one gets upper and lower bounds for the densit¢ ahder condi-
tions that seem to be more clear and more general than in previous work (Diebolt
and Posse, 1996). Some extrawork is needed to extend the implicit formula (9) to
non-Gaussian processes, but this seems to be feasible.

As for Theorem 1.1 for derivatives of order greater than 1, its statement and its
proof rely heavily on the Gaussian character of the process.

The main result of this paper has been exposed in the note bis Aral
Wschebor (1999).

2. Crossings

Our methods are based on well-known formulae for the moments of crossings of
the paths of stochastic processes with fixed levels, that have been obtained by a
variety of authors, starting from the fundamental work of S.O.Rice (1944-1945).
In this section we review without proofs some of these and related results.

Let f : I — R be a function defined on the intervabf the real numbers,

Cu(fsD):={rel:f(t)=u}
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N, (f; 1) = ﬁ(cu(f§ I))

denote respectively the set of roots of the equafion) = u on the intervall and
the number of these roots, with the conventigy f; I) = +oo if the setC, is
infinite. N, (f; I) is called the number of “crossings” gf with the “level” u on
the intervall.

In the same way, iff is a differentiable function the number of “upcrossings”
and “downcrossings” of are defined by means of

Uulfs D i=ttel: fO)=u, f'(t) >0}

Dy(f; ) :=t(rel: f(t) =u, f't) <O).

For a more general definition of these quantities see €ramd Leadbetter (1967).

In what follows, || |, is the norm off in LP(1,1), 1 < p < 400, A denot-
ing the Lebesgue measure. The joint density of the finite set of real-valued random
variablesXy, ...X, atthe poin(x1, ...x,) willbe denotety, . ... x, (x1, ...x,) when-
ever it existsg (1) 1= (2n)~2exp(—12/2) is the density of the standard normal
distribution,® (¢) := fO’O ¢ (u)du its distribution function.

The following proposition (sometimes called Kac’s formula) is a common tool
to count crossings.

Proposition 2.1. Let f : I = [a, b)] — R be of clas¥?, f(a), f(b) # u.If
does not have local extrema with valu®n the intevall, then

N,(f; D =Ilim 1/(28)/1{\f(t)7u|<8}|f/(t)|dt-
540 /

Form andk, positive integersk < m, define the factoriatzz power ofm by
mlk] =mm—-21)---(m—k+1).

For other real values of andk we putm!¥] := 0. If k is an integek > 1 and/ an
interval in the real line, the “diagonal @f ” is the set:

Di(I) := {(t1, ..., ) € I¥, t; = 1, for some painj, h), j # h}.

Finally, assume thaX = {X; : r € R} is a real valued stochastic process with
paths. We set, fofty, ..., &) € IX\Dy(I) andx; e R (j =1, ..., k):

X (X1, ... X, x/l, ...)c,/{)d)c/l...dx,/C
and
I (x1, ..x) = /k Ag o (X1, xg)dty.. di,
1

where it is understood that the density in the integrand of the definitiot,of ;,
(x1, ...xx) exists almost everywhere and that the integrals above can take the value
+o00.
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Proposition 2.2. Let k be a positive integel a real number and a bounded
interval in the line. With the above notations and conditions, let us assume that the
processX also satisfies the following conditions:

1. the density
/ /
DXy Xy XY o X, (VL Xk, X, 00X

exists for(ty, ...t), (s1, ...sx) € I*\Dy(I) and is a continuous function of
(11, ...ty) and ofxy, ...x; at the point(u, ..., u).
2. the function

(1, ooy tk, X1, X)) —> Agy g (X1, . Xk)

is continuous for(ry, ..., ) € I*\Dy(I) andx1, ...x; belonging to a neigh-
bourhood ofi.
3. (additional technical condition)

,,,,,

as |sp — t1| —> 0, uniformly as(z4, ..., f) varies in a compact subset of
I*\Dy(I) andx, ..., x; in a fixed neighbourhood of.

Then,
E((N X, )*y = I u, ..., u). 2)

Both members in (2) may beco

Remarks. (a) Fork = 1 formula (2) becomes

+00
E[N,(X; )] = /dt/ |x/|leyX;(u,x/)dx/. 3)
1 —0o0
(b) Simple variations of (3), valid under the same hypotheses are:
+00
E[U,(X; D] = /dt/ x’thX;(u,x')dx’ 4)
I 0
0
E[D,(X; D] = /dt/ |x/|pX1’X;(u,x/)dx/. (5)
1 —00

In the same way one can obtain formulae for the factorial moments of “marked
crossings”, that is, crossings such that some additional condition holds true. For
example, ifY = {Y; : t+ € R} is some other stochastic process with real values
such that for every, (¥;, X;, X;) admit a joint density—oco < a < b < 400 and

NP(X, Iy:=t{r:tel, X, =u, a<Y, <b}.

Then

b +00
E[N;”b(X; D] :/ dy/dt/ |x’|pyt’X“X;(y,u,x’)dx’. (6)
a 1 —00



Regularity of the distribution of the maximum 5

In particular, ifM;fb is the number of strict local maxima &f ) on the intervall
such that the value of( lies in the intervala, b), thenM:b = Dg’b(X/, I) and:

b 0
E[M],] = / dy / dt / Ix"|px, x; xr (x, 0, x")dx". @)
a 1 —00

Sufficient conditions for the validity of (6) and (7) are similar to those for 3.

(c) Proofs of (2) for Gaussian processes satisfying certain conditions can be
found in Belayev (1966) and CramLeadbetter (1967). Marcus (1977) contains
various extensions. The present statement of Proposition 2.2 is from Wschebor
(1985).

(d) It may be non trivial to verify the hypotheses of Proposition 2.2. However
some general criteria are available. For examplei a Gaussian process with
paths and the densities

PXig,oo X Xy o X5

are non-degenerate fori, ...ty), (51, ...5x) € I¥\ Dy, then conditions 1, 2, 3 of
Proposition 2.2 hold true (cf Wschebor, 1985, p.37 for a proof and also for some
manageable sufficient conditions in non-Gaussian cases).

(e) Another point related to Rice formulae is the non existence of local extrema
at a given level. We mention here two well-known results:

Proposition 2.3 (Bulinskaya, 1961).Suppose thakX has %! paths and that for
everyt € I, X, has a densitpy, (x) bounded fotx in a neighbourhood af.
Then, almost surely¥ has no tangencies at the levelin the sense that if

TuX ={tel, X, =u,X, =0},
thenP(TX = @) = 1.

Proposition 2.4 (Ylvisaker's Theorem, 1968).Suppose thatX; : r € T} is a
real-valued Gaussian process with continuous paths, defined on a compact sepa-
rable topological spac& and thatVar(X,) > 0for everyr € T. Then, for each

u € R, with probability 1, the function — X, does not have any local extrema
with valueu.

3. Proofs and related results

Let & be a random variable with values in‘Rvith a distribution that admits a
density with respect to the Lebesgue measur€he density will be denoted by
pe(.) . Further, supposeg is an event. It is clear that the measure

ne(B; E) = P({§ € B}NE)

defined on the Borel se® of R¥, is also absolutely continuous with respeckto
We will denote the “density of related toE” the Radon derivative:

dug(.; E)
di

Itis obvious thatp; (x; E) < pg(x) for A-almost every € R*.

pe(x; E) = (x).
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Theorem 3.1. Suppose that has%? paths, thatx, X', X” admit a joint density at
every time, that for every, X, has a bounded densipy (.) and that the function

1 0
1(x,2) ::/ dt/ x| px, x,xr(x, 2, x")dx"
0 —00

is uniformly continuous in for (x, z) in some neighbourhood @#, 0). Then the
distribution of M admits a densityy,(.) satisfying a.e.

pm(u) < pxo(u; X < 0) + px, (u; X7 > 0)
1 0
—i—/ dt/ Ix"1px, x: x»(u,0,x")dx". (8)
0 —00 et

Proof . Letu € R and/ > 0. We have

PM<u)— PM<u—h)y=Pu—h<M <u)
<Pu—-h<Xo<u Xyg<0)+Pu—h<X1<u,X;>0)
+P(M+_h’u>0),

u

whereM;Qh,u = M;[h . (0, 1), sinceifu —h < M < u, then either the maximum

occurs in the interior of the intervg0, 1] or at 0 or 1, with the derivative taking
the indicated sign. Note that

PM,, >0 <EWM,_, ).

Using Proposition 2.3, with probability ¥’(.) has no tangencies at the level 0,
thus an upper bound for this expectation follows from the Kac's formula:

1 1
Mf_h,uﬂ[nogfo Lix oetu—nay L oe-s.sn 1o <o | X" (0O1dt - as.

which together with Fatou’s lemma imply:

1 8 u u
EM, ) <liminf = I = 1(x,0)dx.
(M) < liminf — L; dsz (x, 2)dx fH (x, 0)dx
Combining this bound with the preceeding one, we get
PM<u)— P(M <u-—h)
u
< / [Pxo(x; Xg < 0) + px,(x; X1 > 0) + I (x, 0)] dx,
u—nh
which gives the result.
In spite of the simplicity of the proof, this theorem provides the best known
upper-bound for Gaussian processes. In fact, in this case, formula (8) is a simpler

expression of the bound of Diebolt and Posse (1996). More precisely, if we use
their parametrization by putting

p(s, 1)

m()=0; r(s,t)= 0D
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with
p(t, t) = 17 ;Oll(t» t) = 17 plO(t’ [) = 07 plz(tv t) = 07 POZ(ts t) = _13

after some calculations, we get exactly their bowhd:) ( their formula (9)) for
the density of the maximum.

Let us illustrate formula (8) explicitly when the process is Gaussian, centered
with unit variance. By means of a deterministic time change, one can also assume
that the process has “unit speed’dr(X;) = 1). Let L the length of the new
time interval. Clearlyv ¢, m(z) = 0, r(t,t) =1, r11(¢,¢t) =1, riot,t) = O,
r12(t,t) = 0, ro2(¢, t) = —1. Note that

Z~N(u,0%) = E(Z7) =0¢(u/o) — p®(—p/0).

The formulae for regression imply that conditionally &p = «, X; = 0, X/
has expectatior-u and variance,»(z, t) — 1. Formula (8) reduces to

L
pu(u) < p*(u>:=¢(u)[1+(2n>—1/2 /0 Co(t)p(u/Cy(1)) + uq><u/cg(r)>dr} ,

with Cg (1) 1= /r22(t, 1) — 1
Asx — +00, b(x) = 1— £ 4 $0) 4 0 (£2). This implies that

L
P = ¢ [1+ Lu(27)™ "2+ (2m) 22 /0 cg(r)qs(u/cg(r))dt}
+0 <u_4¢(u/C+)> :

with C* 1= supp 1] C4(1).
Furthermore the exact equivalent@f; (v) whenu — +oo is

@r)ytul exp(—u2/2)

as we will see in Corollary 1.1.
The following theorem is a special case of Lemma 3.3. We state it separately
since we use it below to compare the results that follow from it with known results.

Theorem 3.2. Suppose thaX is a Gaussian process satisfyify. ThenM has a
continuous density,, given for every: by

pmW) = pxou s M <u)+px,(u"; M <u)

1 0
+/ dt/ |x//|pXt’X;,X;r(u_7 0.x": M < uydx", o
0 —00

where px,(u™; M < u) = limyy, px,(x; M < u) exists and is a continuous
function ofu , as well aspx, (u™; M < u) andpxt’x;,x;/(u*, 0, x"; M <u).
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Again, we obtain a simpler version of the expression by Diebolt and Posse
(1996).
In fact, the result 3.2 remains true Xf is Gaussian with2 paths and one
requires only thak, X;, X;, X; admit a joint density for alf, 7, s # ¢ € [0, 1].
If we replace the everit < u} respectively by{ X < 0}, {X] > 0} andQ in
each of the three terms in the right hand member in formula (9) we get the general
upper-bound given by (8).
To obtain lower bounds fgr, (1), we use the following immediate inequalities:
PM<u/Xo=u) =PM <u, X6 <0/Xo=1u)
> P (X5 <0/Xo=u)
—EU,[0, 1]1{X6<0}/X0 =u).

In the same way
PM <u/X1=u) =P(M <u,X;>0/X1=u)

P (X} >0/X1=u)
—E(Dy[0, 11y~ 0y/ X1 =u)

v

andifx” <0:

PM<u/X;=u,X;,=0X=x")
Z 1 - E([Du([o’ t]) + UM([t7 1])] /Xt =1u, X; = Oa X;/ = -x//)~

If we plug these lower bounds into Formula (9) and replace the expectations of
upcrossings and downcrossings by means of integral formulae of (4), (5) type, we
obtain the lower bound:

pm ) > pxy(u; Xg < 0) + px, (u; X7 < 0)
1 0
+/ dl/ Ix"|px, x:, xy (, 0, x")dx"
0 —00

1 0 +00
i / i / /
_/ ds/ dx / xstx,Xé,X()Xé(u"xs’u"x)d'xs
0 —o0 0 '

1 0 ! 0 / ’ 1 ’
_ dt |x//| fO ds f_oo |x |pXS,X§,X,,X;,X;/(M9x ,u,O,x )d-x dx//
+fldsf+oox/ / rxr(u, x' u, 0, x")dx' '
0 —o0 t 0 Px,. x;.x,.xx (u, x'u, 0, 0
10

Simpler expressions for (10) also adapted to numerical computations, can be found
in Cierco (1996).

Finally, some sharper upperbounds fqy (1) are obtained when replacing the
event{M > u} by {Xo + X1 > 2u}, the probability of which can be expressed
using the conditionnal expectation and varianc&efH+ X1; we are able only to
express these bounds in integral form.

We now turn to the proofs of our main results.
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Lemma 3.1. (a) LetZ be a stochastic process satisfyifg (k > 2) andt a point
in [0, 1]. Define the Gaussian processgs, Z™, Z! by means of the orthogonal
decompositions:

Zy=d" () Zo+sZ° se€(0,1]. (11)
Zy=a'(s)Z1+(1—5)Z 5€[0,1). (12)

7 o—pl t e t)z t
s =b(S)Z;+c (5)Z, + 5 Z, sel0,1] s#t. (13)

Then, the processes ™, Z7, Z! can be extended definedsat= 0,s = 1,5 = ¢
respectively so thatthey become pathwise continuous and Satisfy Hy 1, Hy—2
respectively.

(b) Let £ be any function of clas§*. When there is no ambiguity on the pro-
cessZ, we will definef™, 7, ' in the same manner, putting f instead of Z in
(11), (12), (13), but still keeping the regression coefficients correspondizg to
Then f, 7, f* can be extended by continuity in the same way to functions in
Cck-1, ck=1 ck—2 respectively.

(c) Letm be a positive integer, suppogesatisfiesHy,,+1 andr, ..., t,, belong
to[0, 1] U {, -}. Denote byz":-! the process obtained by repeated application
of the operation of part (a) of this Lemma, that is

Zitetn =z fm—l)t’"
s s

Denote bysy, ..., s, (p < m) the ordered p-tuple of the elementsgf..., 1, that
belong to[0, 1] (i.e. they are not I-” or “ —"). Then, a.s. for fixed values of the
symbols *", * " the application:

(sl, ...,sp,s) — (Z;l """ tm (Ztl""”m);>
is continuous.

Proof . (a) and (b) follow in a direct way, computing the regression coefficients
at (s), a™ (s), b'(s), ¢’ (s) and substituting into formulae (11), (12), (13). Note
that (b) also follows from (a) by applying it 8 + f and toZ. We prove now (c)
which is a consequence of the following:

Suppose (1, ..., 1) is a Gaussian field witli'”? sample pathsy > 2) defined on

[0, 1]* with no degeneracy in the same sense that in the definition of hypottigsis
(3) for one-parameter processes. Then the Gaussian fields defined by means of:

25 ) = (1) (Z(tl, ol 1) — @ (s o ) Z(Es oo Tt 0))
for s, #£ 0,

Zt, i) = (A — 1) (Z(tl, o B2, 1) — @ (11, ey 1) Z(10, ey T 1, 1))
forg #£1,

> 2
Z(t1, ootk i) = 2(p1 — 1)~ (Z(t1, ooy Br—1, k1)
=b(t1, ..., t, i) Z (21, ..., i)

a0z
—c(t, ..., Ik, l‘k+l)a(tl’ o 18)) for fri1 # 1
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can be extended {®, 1]* (respectively{0, 1], [0, 1]¥*1) into fields with paths in
cP~1 (respectivelyc?~1, €P~2). In the above formulae,

-a" (11, ..., i) is the regression coefficient &f(t, ..., ;) on Z(t1, ..., 1, 0),
-a™\(11, ..., 1) is the regression coefficient @f(r1, ..., tx) oNZ (11, ..., tr—1, 1),
-b(t1, ..oy tk, trt1), c(t1, ..., Ik, tr+1) are the regression coefficients of

Z(11, ..., ty—1, tr+1) on the pair(Z(tl, e 1), %(rl, tk)) )
Letus prove the statement @nThe other two are simpler. Denote by V the sub-

space of.2 (Q, 3, P) generated by the pa(|Z(t1, e 10), g%(tl, tk)) . Denote

by ITy, . the version of the orthogonal projectionbf (22, 3, P) on the orthogonal
complement of, defined by means of.

9z
My (Y) =Y — [bZ(t1, ... tx) + ca(tl, e 0],

whereb andc are the regression coefficientsiofon the pair

Z(t 1) 8Z(t 1)
1, -5 lk), a[k 1y eees k).

Note that if(Yy : 6 € ©} is a random field with continuous paths and such that
6 — Y, is continuous inL2 (2, I, P), then a.s.

(0,11, ... ) = My (Ye)

is continuous.
From the definition:

Z(t1, oor i, i1) = 2 (i1 — 1) "2 My (Z(t, ooy -1, Tr41)) -

On the other hand, by Taylor’s formula:

0Z
Z(t1, oo i1, iy 1) = Z(11, ooy )+ (tip1 — ) a—(tl, v )R (T2, oy B, it 1)

173
with
1 927
Ro(t1, ..., te, try1) = / —2(t1, vy 1—1, T) (k1 — T) dT
I 8tk
so that

Z(t1, ooy 1, 1) = M1 [2 (te+1 — 1) 2 R (11, ..., 1, tk+1)] . (14)

Itis clear that the paths of the random fiéfdare p — 1 times continuously dif-
ferentiable for, ;1 # #. Relation (14) shows that they have a continuous extension

to [0, 1t with Z(r1, ..., tx, 1) = Mo (%%(rl, zk)). In fact,
k

Myt (2(Sk41 = SK) 72 R2 (51, ooy Sk, Sk11))
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-2 s 9z
=2(sk41 = sK) 7 [ Ty (W(Sls s SK—1 f)) (sk41 — 1) d.
k

According to our choice of the version of the orthogonal projectign , a.s. the
integrand is a continuous function of the parameters therein so that, a.s.:

2

~ 0°Z
Z (81, .. Sk, Sk+1) — ITyo <?(I1, e tk)> when (s1, ..., Sk, Sk+1)
k
— (1, oou, tr, ).

This proves (c). In the same way, when> 3, we obtain the continuity of the
partial derivatives off up to the order p-2.

The following lemma has its own interest besides being required in our proof
of Lemma 3.3. Itis a slight improvement of Lemma 4.3, p. 76 in Piterbarg (1996)
in the case of one-parameter processes.

Lemma 3.2. Suppose thaX is a Gaussian process witi® paths and that for all
s # t, the distributions ofX,, X, X;, X; and of X;, X/, Xt(z), Xt(S) do not degen-
erate. Then, there exists a const&{depending on the process) such that

4
Px,.x, x.x, (¥1, X2, X1, x3) < K (1 —5)

for all x1, x2, x71, x5, e Rand alls, ¢, s # 1 € [0, 1].
Proof .

Px,.x,.x..x; (X1, X2, X1, Xp) < (2m)~2 [DetVar(Xs, X:, X5, X;)]_l/z,
whereDet Var stands for the determinant of the variance matrix. Since by hypoth-
esis the distribution does not degenerate outside the diagena) the conclusion
of the lemma is trivially true on a set of the forfiy — ¢| > 8}, 6 > 0. By a com-
pactness argument it is sufficient to prove it for in a neighbourhood ofto, 1)
for eachrg € [0, 1]. For this last purpose we use a generalization of a technique
employed by Belyaev (1966). Since the determinant is invariant by adding linear
combination of rows (resp. columns) to another row (resp. column),

DetVar(Xy, X;, X, X)) = DetVar(X,, X,, X®?, X®),

with
5 t—5)7%
XP =X, — X, — (t — )X ~ — X2
2 o 0=9% 0
t—s) ° 6 fo >

The equivalence refers t&,7) — (fo, t0). Since the paths ok are of class
%3, (XS X, (21t —5)")XP?, (60t —s)_z)f(§3)> tends almost surely to

X0 =X - X, -
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(Xto, X;O, Xt(oz) X,(g’)) as(s,t) — (o, t0). This implies the convergence of the

variance matrices. Hence

(t —s)8 r @

DetVar(XS,X,,Xé,X;): 144 DelVar(X,O,Xto, 0

3
XD,

which ends the proof.
Remark. the proof of Lemma 3.2 shows that the densityXgf X/, X;, X; exists
for |s — 1| sufficiently small as soon as the process #idpaths and for every

the distribution ofX,, X/, X/, x® does not degenerate. Hence, under this only
hypothesis, the conclusion of the lemma holds true fer 3 — z| < n and some
n > 0.

Lemma 3.3. SupposeZ = {Z; :t € [0, 1]} is a stochastic process that verifies
H>. Define:
Fy(u)=FE (gv-lAu)

where

o Ay =AuZ,B)=1{Z: <B@)u forallte[0,1]},

e A() is areal valuedC? function defined of0, 1],

o & =G(Z, —B(tD)v, ..., Z;, — B(tm)v) for some positive integex, 1, ..., t,, €
[0,1], v € R and som& > functionG : R" — R having at most polynomial
growth atoo, that is,|G(x)| < C(1+ ||x||?) for some positive constan€, p
and allx € R™(] . | stands for Euclidean norm).

Then,
For eachv € R, F, is of classC?! and its derivative is a continuous function
of the pair(u, v) that can be written in the form:

Fi@) = BOE (8, 1a,(z- ) ) P20 (B (©) 1)
+BOE (&)L, (215 ) P22 (B D)0
1
— [ BOE (s (2= 5 0a) 1o,
xpz,.z (B @) .u, B (1) .u)dt, (15)

where the processes™, Z7, Z' and the functiong™, g™, g’ are as in Lemma
3.1 and the random variables . &, &, are given by:

£, =G[n (Z; — g (tl)u) FB () (u—), ...
st (2}, = B () ) + B (1) (= v)]

£, =G[A-1n) (zjl _ g (tl)u> FB () (u—v), ...
oo W= 1) (2, = B ) ) + B () (= 0)]

tm
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(t1 —1)?

£l = G[ 5 (Zh = B (0w) + B (D) (w = ), .

_ 2
e % (Zztm - ﬁt (tm) M) + B (tm) (u — U)]

Proof . We start by showing that the arguments of Theorem 3.1 can be extended to

our present case to establish tiatis absolutely continuous. This proof already

contains a first approximation to the main ideas leading to the proof of the lemma.
Step 1Assume - with no loss of generality - that> 0 and write forz > O:

Fy() = Fou = h) = E (8.1a04, ) — E (Eo-1a, 0, ] (16)
Note that:
Au\ Auci CUBO( = h) < Zo < O, BO) > 0}
U@ =) < 21 < fu pO) > UMY, =1} @)
where:

MY =ttt e(0,1), Bt) > 0, the functionZ) — B()(u — h)

u—nh,u
has a local maximum atwith value falling in the intervalO, 8(¢)A4]}.
Using the Markov inequality

1 1
Pu®, =20 <E(MY,,).

and the formula for the expectation of the number of local maxima applied to the
process — Z; — B(t)(u — h) imply

|E (§0.1a,\Au_s) |
BOu
= 1{ﬂ(0)>0}/ E (&)]/Zo = x) pz,(x)dx
BO)(u—h)
B(Du
Hpaeo [ E(&1/20=x) patids
B (u—h)
1 B(D)h
+/O 1{ﬂ(r>>0}df/0 E(1&1(Z] = B"()u — )™/ V2 = (x,0))
.Pvy(x, 0)dx, (18)
whereV; is the random vector
(2= BOw@=m). 7] = B 0@ —n).
Now, the usual regression formulae and the forng,afmply that
|E (6.1a,04,_,) | < (const).h

where the constant may dependwohut is locally bounded as a function of
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An analogous computation replaci

(1)
“hu DY

y®

won =Bt € (0,1), B(t) <0, the functionZy — B(Hu
has a local maximum at Z, — B(t)u € [0, —B(¢)h]}

leads to a similar bound for the second term in (16). It follows that
|Fy(u) — Fy(u — h)| < (const).h

where the constant is locally bounded as a functiom.ofhis shows that), is
absolutely continuous.

The proof of the Lemma is in fact a refinement of this type of argument. We
will replace the rough inclusion (17) and its consequence (18) by an equality.

In the two following steps we will assume the additional hypothesis Zhat
verifies Hy for everyk andg(.) is aC function.

Step 2

Notice that:

Ay \ Au—n = Ay N[{BO)(u —h) < Zo < BO)u, B(0) > 0}
B —h) < Z1 < B(Du, ) > UMY, =1)].  (19)

u—h,u

We use the obvious inequality, valid for any three eventsF, Fs:

3
Z 1 — 1u§Fj < 1lpnr + 1pnr + 1enm
1

to write the first term in (16) as:

E (5. 1a,04,.) = E (60-24, Lp0)w—h)<20<pOu)) Lp0)>0)
+ E (614, 1) -y <z1<p0yu}) Lip0)>0)

1

+E (824,47, ) + Ra(h) (20)
where

IR1(M)| < E (1&012(8(0) (u—h) < Zo=BOu. B (u—h) < Z1 <L} ) L{8(0)>0,8(1)>0)

+E <|‘§”|l{ﬁ(O)(u—h)<Zosﬂ(0)u,Mlﬁl)h,uzl}) 1i50)>0)
+E <|€“|1{ﬁ(1>(u—h)<zl<ﬂ(1)u,M;”h,,,>1}) Lisw-o
1
+E <|sv|(M;_>h,u — 1, >1)> = Ta(h) + Ta(h) + T3(h) + Ta(h)

Ouir first aim is to prove thaRy(h) = o(h) ash | O.
Itis clear thatTy(h) = O (h?).
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Let us considefl» (k). Using the integral formula for the expectation of the
number of local maxima:

1 BO)A B(t)h
To(h) < 1{5(0)>0}/0 1{ﬂ(1)20}df/(; dzo/o dz.

E (1512 = B"(1)(u — 1)~/ V3 = v3) prs(v3),

whereVs is the random vector
(20— BO@—1). Z: = p)@ = 1), Z = B (D)@ — 1)),

andvs = (zo, z, 0).

We divide the integral in the right-hand member into two terms, respectively the
integrals or[0, §] and[é, 1] in thez-variable, where O< § < 1. The first integral
can be bounded by

5 Bk
fo Lpsondt /0 dz E ([61(Z) — B0 — b))~/ Va = (2. 0)) pya(z. 0).

where the random vectd#, is the same as in (18). Since the conditional expecta-
tion as well as the density are boundedddn a bounded set andQ i < 1, this
expression is bounded lgyonst)sh.

As for the second integral, wheris betweer$ and 1 the Gaussian vector

(Zo = BOYu —h), Z; — B)u — h), Z; — /(1) (u — h))

has a bounded density so that the integral is bound€ b%, whereC; is a constant
depending o1.

Sinces > 0 is arbitrarily small, this proves thdb(h) = o(h). T3(h) is similar
to To(h).

We now consideffs(h). Put:

Ev={1 28 = B0 =1 Iz 4 0 {16) < n724)
where|| . || Stands for the sup-norm [, 1]. So,
Tah) < E (16025,M7, ,MD, , — D)+ E (1&l1eMD, ) @1)

(E€ denotes the complement of the evént
The second term in (21) is bounded as follows:

£ (it ) < | £ (161 £ ((M;?h,u)“)}m (PEn)™.

The polynomial bound otz plus the fact thaf| Z ||« has finite moments of all
orders, imply that (]&,|*) is uniformly bounded.

Also, M\, < Do(Z{, — B'()(u —h).[0.1]) = D (recall thatDo(g; I) de-

u—h,u —

notes the number of downcrossings of level 0 by functiprA bound forE (D4)
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can be obtained on applying Lemma 1.2 in Nualart-Wschebor (1991). In fact, the
Gaussian proce N B’ () (u — k) has uniformly bounded one-dimensional mar-
ginal densities and for every positive integethe maximum ovef0, 1] of its p-th
derivative has finite moments of all orders. From that Lemma it followszH@p*)
is bounded independently of h,0h < 1.

Hence,

(€8]
E (|$U|1EhCMufh,u) "
< (consn) [P 23 = B O = ) o> h74) + P8, > 174 ]
- 1/2
< (const) [Cae™ @ L4 (g 10)]

whereC1, Cp are positive constants agdany positive number. The bound on the
first term follows from the Landau-Shepp (1971) inequality (see also Fernique,
1974) since even though the process dependsibis easy to see that the bound
is uniform oni, 0 < h < 1. The bound on the second term is simply the Markov
inequality. Choosing > 8 we see that the second term in (219(8).

For the firsttermin (21) one can use the formula for the second factorial moment

of Mﬁh,u to write it in the form:

1rl B(s)h B(t)h
/ / Lip5)=0,=0)dsdt / dzy / dz
0 Jo 0 0

E(1&1E, (Z] — B"()u = ) (Z] — B" (1) — h))™ / Va = va).pv,(va),
(22)

whereV;, is the random vector
(2= BOYw =), 2 = BOW—h), Z, = B'()w — ), Z] = B () — b))

andvg = (z1, 22, 0, 0).
Lets # t andQ be the - unique - polynomial of degree 3 such that
0(s) = z1, Q@) = z2, O'(s) =0, Q'(t) = 0. Check that
0 =21+ (@2 — )y —9)°@ =2y —5)(t —5)"°
Q" (1) =6(z1— 22)(t —5)°
Q"(s) = —6(z1 — 22)(t —5) 2.

Denote, for each positive h,

¢(y)=2Zy = B)(u—h)— Q).

Under the conditioning/s = vg4 in the integrand of (22), th€*° function ¢(.)
verifiesz(s) = ¢(t) = ¢'(s) = ¢/(t) = 0. So, there existi, > € (s, t) such that
(1) = ¢ (t2) = 0 and fory € [s, 1]:

y y T 2
|¢”(y)|=|/ ¢ (0)de |=|f dr[ (@ @)do 1< L2 e
11 11 12 2
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Noting thata=b~ < (#)2 for any pair of real numbers, b, it follows that the
conditional expectation in the integrand of (22) is bounded by:

E(l&|1g,.(t = )% 25 = B = h) 100/ Va = va)
<t - h V2=t — ) n%A (23)

On the other hand, applying Lemma 3.2 we have the inequality
Pvs(21.22.0,0) < pz. 7 7 71(0,0,0,0) < (const)(t —s)™*

the constant depending on the process but nat on
Summing up, the expression in (22) is bounded by

(const).hz.h73/4 = o(h).

Replacing now in (20) the expectatidh(év.lAu M,El_)h,u) by the corresponding
integral formula:

E (Sv'lAu\Au—h}
= 130>08(0) f E (§,.14,/Z0o = B(0)x) .pzo(B(0)x)dx

u—
u

+1ip0)=08(1) E (&.14,/Z1 = B(D)x) .pz (B(Dx)dx

1 lhlqﬁ(z)h
+ /0 Lpozods [ d2E (6010, (2] = /)= 1)/ V2 = . 0)
X sz, 0) + ()

- / Hi(x, h)dx + o(h) (24)
h

u—

where:

Hi(x, h) = 1ip0)>0BO0)E (§,.14,/Zo = B(0)x) .pz,(B(0)x)
+ >0 BAE (§,.14,/Z1 = B(Dx) .pz,(B(D)x)
1

+ / Lipy=0)
0

E(£.1a,(Z] = B"()( — h)™/Z; = B(t)x, Z; = B' (1) (u — )
Pz,.2/(B@Ox, B’ (1) (u — h))B(t)d. (25)

Step 3 Our next aim is to prove that for eaatthe limit

lim Fy(u) — Fy(u —h)
hi0 h

exists and admits the representation (15) in the statement of the Lemma. For that
purpose, we will prove the existence of the limit

1
lim-FE (&,.1 . 26
}!w p (&v-1a0\Aus) (26)
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This will follow from the existence of the limit

lim Hi(x, h).
hl0,u—h<x<u

Consider the first term in expression (25). We apply Lemma 3.1(a) and with the
same notations therein:

Zi=d" () Zo+1Z5, B=d 1)BO)+18 re[0,1].
Foru — h < x < u replacing in (25) we have:
E (&.14,/Z0 = B(O)x)
- E(G(tl(ZZ — B (1)) + BUDE = V), s 1 (Z5 = B (1))

B () (x v))lg(u,x>)
=E (E;x'lB(uaX)) (27)
wheresF is defined in the statement and
Bu, x) = {tzf < B(u —a" (1) B(O)x for all £ € [0, 1]} .
For eachs such that O< 8§ < 1 anda" (s) > 0if0 < s < 8, we define:

Bs(u, x) = {rz; < B(yu — " (1) B(O)x for all 1 € [, 1]}
a” () BO)(u — x)
t

= {zj < B (Hu + forallz € [6, 1]}.

It is clear that since we consider the c#g@) > 0, then

B(u, x) = Bo+(u, x) :=lim Bs(u, x).
8§10

Introduce also the notations:
M5 = sup{ — B (u:te [s, t]}

ns(x) = |u —xlsup{“()—ﬁ(o)| tels, 1]}
We prove that as 1 u,
E (51')_,)(-13(“,;()) —E (gl';u-lB(u,u)> (28)
We have,
( vx-1B, x)) E( va-lBw, u))
<E (|Ev c—E) ( v AB@,x) — 1B, u))) l. (29)
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From the definition ofgvﬁx itis immediate that the first term tends to a$ u.
For the second term it suffices to prove that

P(B(u,x)AB(u,u)) — 0asx 4 u. (30)
Check the inclusion:
B(u, x)ABs(u,u) C {—ns(x) < Mis,1) < ns(x)} U {Ms,1y < 0, Mo,5 > 0}
which implies that

P(B(u,x)AB(u,u)) < P(B(u,x)ABs(u,u)) + P(Bs(u, u)AB(u, u))
< P(IMs,33] < ns(x)) + 2.P(M5.1) <0, Mo 5) > 0).

Letx 1 u for fixeds. Sincens(x) | 0, we get:

limsupP (B(u, x)AB(u,u)) < P(M[s, =0)+2.P(M[s,1 <0, M[o,5] > 0).

xtu

The first term is equal to zero because of Proposition 2.4. The second term
decreases to zero &s|, 0 since{M[,g,l] <0, Mo,5] > 0} decreases to the empty
set.

It is easy to prove that the function

(u,v) > E (éiu‘lAL,(zF,ﬁF))

is continuous. The only difficulty comes from the indicator functign - 4+, al-
though again the fact that the distribution function of the maximum of the process
Z'(f) — B7()u has no atoms implies the continuity inin much the same way as
above.

So, the first term in the right-hand member of (25) has the continuous limit:

1p0-0BOE (8, 14,z ) ) P2 BO ).

With minor changes, we obtain for the second term the limit:
Lpw-0BDE (&', 14,245 ) P BD ),

whereZ™, g7 are as in Lemma 3.1 arf, as in the statement of Lemma 3.3.

The third term can be treated in a similar way. The only difference is that the re-
gression must be performed on the par, Z)) for eachy € [0, 1], applying again
Lemma 3.1 (a),(b),(c). The passage to the limit presents no further difficulties, even
if the integrand depends dn

Finally, note that conditionally o&Z; = 8(t)u, Z, = p’(t)u one has

zZ! — B "(u =27 — B (u

and
(Zi = B La,z.p = —(Z: — BOW 1A, (z.p)-
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Adding up the various parts, we get:

.1
im 2 E (o-1ana, ) = Lp0-0BOF (5,14, 2p7)) -2 (BO.0)

+1lp-0B(DE (Sﬁ,u-lAu(zim) Pz, (B(L).u)

1
—/0 B0 Lipn=odtE (Eé,u(zf - ﬂt(t)-u)lAM(Zr,ﬁr))
X pz, 7/(BOu, B'(t)u).

Similar computations — that we will not perform here — show an analogous result
for

1
Il'Ing) ZE (gv'lAu—h\Au)

and replacing into (16) we have the result for procegsasth C*° paths.

Step 4 Suppose now that andg(.) satisfy the hypotheses of the Lemma and
define:

Z°0) = (Ye x 2)@) +€¥Y(®)  and (1) = (Ye x B)()

wheree > 0, Y. (t) = e 1y (e~ 1), ¥ a non-negativee™ function with compact
supportffoo.fJ ¥ (¢t)dt = 1 andY is a Gaussian centered stationary process@fth
paths and non-purely atomic spectrum, independer#.d?roceeding as in Sec.
10.6 of Cramer-Leadbetter (1967), one can seeXhadrifies H; for every k. The
definition of Z€ implies thatZ€ inherites this property. Thus for each positae
Z¢ meets the conditions for the validity of Steps 2 and 3, so that the function

FS(u) = E (£51a,(z )

wheregs = G(Zf, — B(t)v, ..., Zy — B (tm)V) is continuoustly differentiable
and its derivative verifies (15) with the obvious changes, that is:
)_

(F) @) = B OE ((66.)" Lay (e per) ) P75 (B © )
16 OE ((€5.)" Ly (2o pery) P25 (B° D )

1
S G (G (@)= 69 ) 10 zrom)
X Pt 2oy (,36 )., (B) () u) dr. (31)

Lete | 0. We prove next thatFy)'(u) converges for fixedu, v) to a limit
function F; () that is continuous i, v). On the other hand, it is easy to see that
for fixed (u, v) F§(u) — F,(u). Also, from (31) it is clear that for each, there
existseg > 0 such thatit € (0, €g), (Fy) (u) is bounded by a fixed constant when
u varies in a bounded set because of the hypothesis on the fun&iand 8 and
the non-degeneracy of the one and two-dimensional distribution of the précess
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So, itfollows thatF,* (u) = F,(u) and the same computation implies t#gtu)
satisfies (15).

Let us show how to proceed with the first term in the right-hand member of
(31). The remaining terms are similar.

Clearly, almost surely, as | 0 one haszf — Z,, (Z¢);, — Z,,(Z¢)] — Z/
uniformly for ¢ € [0, 1], so that the definition o™ in (11) implies tha( Z¢)! —
Z!" uniformly for ¢ € [0, 1], since the regression coefficigat)" () converges to
a" (1) uniformly for ¢ € [0, 1] (with the obvious notation).

Similarly, for fixed (u, v):

B — B €D — &L

uniformly for¢ € [0, 1].
Let us prove that

E ((sgqu)klAu((Ze)h(ﬂey» S E (g;ulAu(zF’m) .
This is implied by
P(Au((z9).(8)) aau (2. 87)) — 0 (32)

ase | 0. Denote, fok > 0, > 0:

Cue = Ay ((ZG)F, (ﬁe)k) = {(Zf)[F < (,36)F (t).u for everyt € [0, 1]]
Eyn= (Zf < B (u+nforallr €0, 1]) .
One has:
P(Cu,EAEu,O) = P(Cu,e \ Eu,n) + P(Eu,n \ Cu,e) + P(Eu,n \ Eu,O)-

Let K be a compact subset of the real line and supposek . We denote:

D, = { sup | [(zf)f — (69" (t).u] - [zf — ﬂ'_(t).u] > n}

uek,t€[0,1]

and
Fuy= {—n < sup (27 = p7(0u) = n} :
t€[0,1]

Fix n > 0 and choose small enough so that:
P (Dey) < 1.
Check the following inclusions:
Cue \ Eun CDeyr  (Euy\Cue) VD, C Fuy  Euy\ EunoC Fuy
which imply that ife is small enough:

P(Cue AEu0) <20+ 2.P (Fup) .
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For eachu, asp | 0 one has

P(Fu,) — P ( sup (Z,F — ﬂWr)u) = 0) =0.
t€[0,1]
where the second equality follows again on applying Proposition 2.4.
This proves that as | 0 the first term in the right-hand member of (31) tends
to the limit

BO)E (s;u.lAu(zk,ﬂk)) D20 (B (0).10).

It remains to prove that this is a continuous functior(iofv). It suffices to prove
the continuity of the function

E (1Au(zk,ﬁk)) —P (Au (Z'_, ,3"))

as a function of:. For that purpose we use inequality:

2 (s (77.8)) - (0 (2))

=P (1 sup (27— B~ u) 1=l 0 11 B ||oo>
t€[0,1]

andag: — Otheright-hand membertends®q(| supo 1) (ZI — B (1).u) |=0)
which is equal to zero by Propostion 2.4.

Proof of Theorem 1.1We proceed by induction on k.

We will give some details for the first two derivatives including some implicit
formulae that will illustrate the procedure for general k.

We introduce the following additional notations. Rut= X; — B8(¢)u and de-
fine, onthe intervdl0, 1], the processe¥™, X, X*, Y™, Y™, ¥, and the functions
BF, g7, ', as in Lemma 3.1. Note that the regression coefficients corresponding
to the processeX andY are the same, so that anyone of them may be used to define
the functionss™, g™, . One can easily check that

YSF = X? — ,BF(s)u
Y =X — B (s)u
Y! = X! — B'(s)u.

N

Fort,....t, € [0,1] U{H H},m > 2, we define by induction the stochastic
processes(’t: i = (X’lwfm*l)t’" YTt — (Y’l’“'”m*l)l”‘ and the function
BlLetm — (ﬂ’l’---*’m—l)”", applying Lemma 3.1 for the computations at each stage.

With the aim of somewhat reducing the size of the formulae we will express
the successive derivatives in terms of the procesdes - instead ofX:m,
The reader must keep in mind that for eactiuplers, ..., 1, the results depend on
u through the expectation of the stochastic prod€ss-'». Also, for a stochastic
processZ we will use the notation

A(Z) = Ao(Z,B) =1{Z;, <0:forallr € [0,1]}.
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First derivative. Suppose thak satisfiesH>. We apply formula (15) in Lemma
3.3foré =1,Z = X andB(.) = 1 obtaining for the first derivative:

F'w) = E (Lam)) Pro© + E (Lar ) pra(©
1
_ /0 E (Y 1,m)) Py,.z, ©. Oda. (33)

This expression is exactly the expression in (9) with the indicated notational chang-
es and after taking profit of the fact that the process is Gaussian, via the regression
on the conditionning in each term. Note that according to the definition of the

Y-process:
E (1A(Y")) =E <1A“(X",ﬂ")>
E (1A(Y“)) =FE <1AL,(X",/3")>
E (Y 40m)) = E (Yit1a,onpm) ) -
Second derivative . Suppose thaX satisfiesH,. Then, X", X, X1 satisfyHa, Hz,
H> respectively. Therefore Lemma 3.3 applied to these processes can be used to
show the existence af” (1) and to compute a similar formula, excepting for the

necessity of justifying differentiation under the integral sign in the third term. We
get the expression:

1
,0
+ fo E (Y1) P10, 0.0y
+010) [ B OF (Lyrr) ) Py @ + B WE (Lyyy ) £y O]

_ /Olﬁq,z) E (yg’qu (sz)> Py vy, 0.0tz
+p10) [BHOE (L)) i@ + BQE (L)) pyO)]
_ folﬂﬂ(,z)E (y[:’leA(YwD Py oy, (0, 0)dt,
—BE (Lyyn) ) + BHOE (Y,’ll*lf,(yqr)) Py (0

1
- /0 Py,.x}, 0.0 | 11 1)E (Y,’ll’*lA(y,l,U) Py (D) dty,
_ fol B (t2)E (Ktll-fZ)/lglleA(yllAIZ)) pY,E,(Y’1)§2 (0, 0)d1,
(34)

In this formulap%;, p%l) andpy, v, (0. 0)%9 stand respectively for the deriv-

ative of Py, (), the derivative ofpy,l(.) and the derivative with respect to the first
variable Of(pytl,Yt/l(., ).
To validate the above formula, note that:
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e The first two lines are obtained by differentiating with respedt,tthe densities
P10 = pxo(=1), pry(0) = pxy (=), py, ; (0.0) = px, x; (~u.0).

e Lines 3 and 4 come fromthe application of Lemma 3.3 to differenfiglg y+).
The lemma is applied witld = X", g = 8", £ = 1.

e Similarly, lines 5 and 6 contain the derivative Bf1,y-)).

e The remaining corresponds to differentiate the function

E(Yif1aym) = E((Xfi - B (fl)”)lAu<X’1,ﬂ’1>>

in the integrand of the third term in (33). The first term in line 7 comes from the
simple derivative
d

%E((Xﬁi - ﬁtl(fl)v)lAM(xfl,ﬁfl)) = —ﬂtl(fl)E(lA(yf1)~

The other terms are obtained by applying Lemma 3.3 to compute

%E((Xfi - ﬂtl(tl)v)lAu(xfl,ﬂfl)),
puttingZ = X', g = B, & = X;! — B (11)v.

o Finally, differentiation under the integral sign is valid since because of Lemma
3.1, the derivative of the integrand is a continuous functionitaft,, u) due
the regularity and non-degeneracy of the Gaussian distributions involved and
Proposition 2.4.

General caseWith the above notation, given the—tupler, ..., f,, of elements
of [0, 1] U {F, I} we will call the processeg, Y, Y172 y".--m-1the “ances-
tors” of Y1~ In the same way we define the ancestors of the fungifon-.
Assume the following induction hypothesis: ¥ satisfiesHy; then F is k
times continuously differentiable and® is the sum of a finite number of terms
belonging to the clas®; which consists of all expressions of the form:

1 1
/ / ds1.dsyQs1, ... sp)E (glA(Ytl,,.,,m)) K1(s1. ... sp)Ka(s1. ... 5p) (35)
0 0

where:

- 1<m<k.

— 11, ety €0, U, -}, m > 1.

- 81, ..,8p, 0 < p < m, are the elements if1y, ..., t,,} that belong td0, 1] (that
is, which are neither*” nor “—"). When p = 0 no integral sign is present.

— Q(s1, .., sp) is a polynomial in the variableg, .., s,.

— & is a product of values df’2-- at some locations belonging {@1, sp} .

— Ki(s1, .., sp) is a product of values of some ancestorsgéf--'» at some
locations belonging to the séts, .., s,} U {0, 1}.

— Ko(s1, .., sp) is @ sum of products of densities and derivatives of densities of
the random variableg, at the point 0, or the pairsZ,, Z.) at the point0, 0)
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Note thatK, does not depend anbut K> is a function ofu.

It is clear that the induction hypothesis is verified ko= 1. Assume that it
is true up to the integer and thatX satisfiesHy 2. ThenF® can be written as
a sum of terms of the form (35). Consider a term of this form and note that the
variableu may appear in three locations:

1. In &, where differentiation is simple given its product form, the fact that
Dy = —gfti(s), g < m,s € {s1,...,5,} and the boundedness of
moments allowing to differentiate under the integral and expectation signs.

2. In K»(s1, .., sp) which is clearlyg™> as a function ofs. Its derivative with
respect ta: takes the form of a product of functions of the tyges(ss, .., sp)
andK3(s1, .., sp) defined above.

3. In1,(yn....). Lemma 3.3 shows that differentiation produces 3 terms depend-
ing upon the processagt:-mm+1 with 1,1 belonging to[0, 1] U {I, H}.
Each term obtained in this way belongsig, 1.

The proof is achieved by noting that, as in the computation of the second de-
rivative, Lemma 3.1 implies that the derivatives of the integrands are continuous
functions ofu that are bounded as functions @, .., s, tm+1, u) if u variesin a
bounded set.

The statement and proof of Theorem 1.1 can not, of course, be used to obtain
explicit expressions for the derivatives of the distribution functioilowever, the
implicit formula for F® (1) as sum of elements @, can be transformed into ex-
plicit upper-bounds if one replaces everywhere the indicator functigns, 1..)
by 1 and the functiong-~ (.) by their absolute value.

On the other hand, Theorem 1.1 permits to have the exact asymptotic behaviour
of F® ) asu — 400 in caseVar(X,) is constant. Even though the number of
terms in the formula increases rapidly withthere is exactly one term that is dom-
inant. It turns out that ag — +oo, F® (x) is equivalent to thé-th derivative of
the equivalent of’'(1). This is Corollary 1.1.

Proof of Corollary 1.1. To prove the result fat = 1 note that under the hypothesis
of the Corollary, one has(t, t) = 1, ro1(t,t) = 0, ro2(t,t) = —r11(¢, t) and an
elementary computation of the regression (13) replaZitny X, shows that:

oo o Tous, )
b'(s) =r(s,1), ¢ (s) = G D
and
fon 1—r(s,t)
B(s) = 2—0 — 7

since we start withg(r) = 1.

This shows that for evenye [0, 1] one has infe[0,1](8’ (s)) > 0 because of the
non-degeneracy condition apd(r) = —ro2(t, 1) = r11(t, t) > 0. The expression
for F/ becomes:

F'(u) = ¢(u)L(u), (36)
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where
L(u) = L1(u) + Lo(u) + La(u),

Li(u) = P(A, (X", D),
Lo(u) = P(A, (X7, B7),

dt
(2ria(t, 1) Y2

Since for each € [0, 1] the proces’ is bounded it follows that

1
La(u) = —/(; E((X; — ' (w14, xt p1))

a.s. 1Au(Xt’/3t) — 1 asu — +o0.

A dominated convergence argument shows now figéi) is equivalent to

1 1
t,t
" / roo(t, 1) dt " /\/rll(t,t)dt.
0

T2 Jo )20 T (2m)i2

SinceL1(u), L2(u) are bounded by 1, (1) follows fdr= 1.
Fork > 2, write

h=k
F® () = ¢(k—1)(u)L(u) + Z <i : 1>¢(k_h)(u)L(h_l)(u). (37)
h=2

Asu — +oo,foreachj =0, 1, ...,k — 1,09 (u) ~ (=1)/ u/ $(u) so that the
firsttermin (37) is equivalentto the expressionin (1). Hence, to prove the Corollary
it suffices to show that the succesive derivatives of the fundtiamne bounded. In
fact, we prove the stronger inequality

ILDw)| < lig(—), j=1, ... k—1 (38)
aj

for some positive constantg, a;, j =1,...,k — 1.
We first consider the functioh1. One has:

B (s) = 1_+S’O) for0<s <1870 =0,
(B (s) = —14r(s, 012— s.r10(s, 0) ForO<s <1 (80 = %rn(o, 0.

The derivativeL) (1) becomes
Ly@) = B~ (D E[,, xr1 p-)] Py (B (D)

1
- /O B~ (OE ((Xf ’— ﬂ“’(r)u)lA,,(XH,,gm)) Pxr xmy (B, (B7) (D) dt.

Notice thatg" (1) is non-zero so that the first term is bounded by a constant
times a non-degenerate Gaussian density. Even thgligh) = 0, the second
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term is also bounded by a constant times a non-degenerate Gaussian density be-
cause the joint distribution of the paix’", (X")/) is non-degenerate and the pair
(8" (), (B7)' (@) # (0, 0) for everyr € [0, 1].

Applying a similar argument to the succesive derivatives we obtain (38) with
L, instead ofL.

The same follows with no changes for

Lao(u) = P(A(X™, B7).
For the third term

dt

1
_ t_ gt t g e
La(u) = /0 E((X} — B' (O, x p >)(2m11(,,,))1/2

we proceed similarly, taking into accougt(s) # 0 for everys < [0, 1]. So (38)
follows and we are done.

Remark. Suppose thak satisfies the hypotheses of the Corollary with- 2.
Then, it is possible to refine the result as follows.
For j=1,..,k:

FOw) = (=177 — Dhj_1(u)

1
x [1 + 27) Y2 /0 (ruat, r))lfzdr} ¢ W) + p;wp(u) (39)

whereh j(u) = (‘j#w(u))—lqb(j)(u), is the standard j-th Hermite polynomial
(j=0,1,2,..)and
| pj(u) |< Cj exp(—du?)

whereC1, Co, ... are positive constants aidd> 0 does not depend on

The proof of (39) consists of a slight modification of the proof of the Corollary.

Note first that from the above computationgf(s) it follows that 1) ifXg <0,
then ifu is large enougtk! — B (s).u < O foralls € [0, 1] and 2) if X5 > 0,
thenX} — B~ (0).u > 0 so that:

Li(u) = P(X" — 7 (s).u < 0)forall s € [0, 1]) 1 % asu 1 +oo.

On account of (38) this implies thatiif > 0:
1 +00
0< 5= Liw) = f Ly(v)dv < Dy exp(—81u?)
u

with D1, 81 positive constants.
Lo(u) is similar. Finally:

dt
(2r1a(t, 1))Y/?

1
La(u) = — /0 E (X! — B'(0w)
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1 dt
t t
_/0 E(XG = B OO, 0.0y Gtz @O

The first term in (40) is equal to:

1
(2n)—1/2.u.f (r11(t, 1)Y?dzt.
0

As for the second term in (40) dengte = irR‘) " B'(s) > 0 and letu > 0.
s,te|l,
Then:

P ((AM(X’, ﬂ’))c) < P@s € [0, 1] such thatX’ > e.u) < D3 exp(—5au?)

with D3, §3 are positive constants, the last inequality being a consequence of the
Landau-Shepp-Fernique inequality.
The remainder follows in the same way as the proof of the Corollary.
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