
Square Roots Modulo p

Gonzalo Tornaŕıa ?

Department of Mathematics,
University of Texas at Austin,

Austin, Texas 78712, USA,
tornaria@math.utexas.edu

Abstract. The algorithm of Tonelli and Shanks for computing square
roots modulo a prime number is the most used, and probably the fastest
among the known algorithms when averaged over all prime numbers.
However, for some particular prime numbers, there are other algorithms
which are considerably faster.
In this paper we compare the algorithm of Tonelli and Shanks with an
algorithm based in quadratic field extensions due to Cipolla, and give an
explicit condition on a prime number to decide which algorithm is faster.
Finally, we show that there exists an infinite sequence of prime numbers
for which the algorithm of Tonelli and Shanks is asymptotically worse.

1 Introduction

When p is an odd prime, we denote by IFp the finite field of p elements, and
by IF×p its multiplicative group. We will consider two algorithms for solving the
following:

Problem. Let p be an odd prime, and a ∈ IFp a quadratic residue. Find x ∈ IFp
such that x2 = a.

From now on p will be a fixed prime number. Write p = 2eq+ 1 with q odd; this
determines e and q. Let n be the number of binary digits of p, and let k be the
number of ones in the binary representation of p. We denote by Gp the Sylow
2-subgroup of IF×p , which is cyclic of order 2e.

2 The Algorithm of Tonelli and Shanks

The algorithm of Tonelli [9], is based in this observation: it’s easy to reduce the
problem to the case a ∈ Gp, because [IF×p : Gp] is odd. Then one can use the
Legendre symbol to find a generator of Gp, and compute the square root of a
by means of the discrete logarithm of a with respect to that generator, which
is fast because most of the time the group Gp is small. Moreover, there is a
binary algorithm for computing discrete logarithms in a cyclic group of order 2e;
namely, compute the discrete logarithm bit by bit.
? This work was partially supported by a scholarship of PEDECIBA Matemática



The original method of Tonelli required about e2/2 operations for comput-
ing the discrete logarithm. It was improved by Shanks [8], who rearranged the
algorithm in a clever way such that the operations done for computing a 0 bit
include the operations needed for computing the next bit. Thus, while the num-
ber of operations in the worst case is the same, the number is roughly halved in
average.

Indeed one has

Proposition 2.1 (Lindhurst [5, Lemma 1]). Averaged over all quadratic re-
sidue and non-residue inputs, and ignoring the initialization stage, the algorithm
of Tonelli and Shanks requires 1

4 (e2 +7e−12)+ 1
2e−1 modular multiplications. ut

Remark. In this result the average is taken over a uniformly distributed input
a ∈ IF×p ; if the distribution of a is a concern, one can compute instead

√
ab2

b ,
where b is a uniformly distributed random element of IF×p .

Of course, the density of the prime numbers p = 2eq + 1 for a fixed e is, by
Dirichlet’s theorem, 2−e, and one can conclude that:

Corollary 2.2 (Lindhurst [5, Theorem 2]). Averaged over all prime num-
bers, quadratic residues and non-residues, the algorithm of Tonelli and Shanks
requires 8/3 multiplications after the initialization stage. ut

Remark. The average over all prime numbers is, as usual, the limit for N →∞
of the (uniform) average over all primes ≤ N .

The initialization stage has two steps:

– Find a generator of Gp. For this we take t ∈ IF×p at random and compute
the Legendre symbol of t until we get a quadratic non-residue. Then z = tq

is a generator of Gp. The probability of getting a quadratic non-residue is
1/2 for each try; the expected number of Legendre symbol computations
is therefore 2. Also, q has n − e binary digits, of which k − 1 are ones, so
computing tq will require n+ k − e− 3 multiplications.

– Compute a(q+1)/2 and aq. The binary expression of (q − 1)/2 has n− e− 1
digits, of which k − 2 are ones. Using a binary powering algorithm, one can
compute a(q−1)/2 with n+ k − e− 5 multiplications, and we need one more
for computing a(q+1)/2 and another one to compute aq = a(q−1)/2a(q+1)/2.

Corollary 2.3. Averaged over all quadratic residue and non-residue inputs, the
number of operations required by the algorithm of Tonelli and Shanks is

2n+ 2k +
e(e− 1)

4
+

1
2e−1

− 9 (1)

multiplications, and 2 expected (with respect to choosing t, which is independent
of the input) computations of the Legendre symbol. ut

These results support our assertion that the algorithm of Tonelli and Shanks
is very good when the modulus is fairly random, but they also show that there
could be room for improvements when e is large with respect to n, provided that
such prime numbers exist.



3 The Algorithm of Cipolla

An alternative to using discrete logarithms is the algorithm of Cipolla [3]. Let
a ∈ IF×p , and assume that we know t ∈ IFp such that t2 − a is a quadratic non-
residue. Then X2− (t2− a) is irreducible over IFp, and IFp[α], with α2 = t2− a,
is a finite field of p2 elements, a quadratic extension of IFp.

It’s enough to compute the square root of a in IFp[α]. If a is a quadratic
residue, its two square roots will be in IFp; otherwise we will get something not
in IFp, and we will be able to conclude that a is a quadratic non-residue.

In IFp[α] we have

(t+ α)p+1 = (t+ α)(t+ α)p = (t+ α)(t− α) = t2 − α2 = a , (2)

where the second equality follows because the Frobenius automorphism carries
t + α to its conjugate, t − α. Therefore, if we compute x = (t + α)(p+1)/2, we
have x2 = a.

To find t, we just take t ∈ IF×p at random and compute the Legendre symbol
of t2 − a until we get one such that t2 − a is a quadratic non-residue or 0 (if we
are so lucky, t itself is a square root).

Lemma 3.1. Let a ∈ IF×p . The number of t ∈ IFp such that t2−a is a quadratic
non-residue is (p−1)/2 if a is a quadratic residue and (p+1)/2 if a is a quadratic
non-residue.

Proof. Notice that the set of t such that t2 − a is a quadratic residue is exactly
the same as the set of different t which appear among the pairs (s, t) such that
s2 = t2− a. This equation is the same as (t− s)(t+ s) = a, and so it clearly has
p− 1 solutions.

Now, for each solution (s, t) we get a different solution (−s, t) with the same
t, unless s = 0. We have two cases to consider:

– If a is a quadratic residue, then there are two different solutions with s = 0,
and so the number of different t which appear in the set of solutions is
(p− 3)/2 + 2 = (p+ 1)/2.

– If a is a quadratic non-residue, then there are no solutions with s = 0, and
the number of different t is (p− 1)/2. ut

This lemma shows that in practice is very easy to find such a t, the prob-
ability for each try being slightly more than 1/2; the expected number of tries
is therefore less than 2, and we only need one multiplication, one sum, and one
computation of the Legendre symbol for each try.

After finding t, we only have to compute a (p+1)/2 power of (t+α) in IFp[α].
For this we can use a binary powering algorithm, using the following formulas
for multiplication in IFp[α]:

– (u + vα)2 = (u2 + v2r) + ((u + v)2 − u2 − v2)α, where r = t2 − a is known
in advance, which needs 4 multiplications and 4 sums;



– (u + vα)2(t + α) = (td2 − b(u + d)) + (d2 − bv)α, where d = (u + vt) and
b = av, which needs 6 multiplications and 4 sums.

We can assume that p ≡ 1 (mod 4), as Shanks’ algorithm is obviously better
otherwise. In that case, the binary expression of (p + 1)/2 has n − 1 digits, of
which k are ones. For computing a (p+ 1)/2 power of (t+ α) we therefore need
to use n− k − 1 times the first formula, and k − 1 times the second formula.

Proposition 3.2. For any quadratic residue or non-residue input, the expected
number of operations required for the algorithm of Cipolla is 4n+ 2k − 4 multi-
plications, 4n− 2 sums, and 2 computations of the Legendre symbol.

Combining Corollary 2.3 and Proposition 3.2 we obtain

Theorem 3.3. Given a prime number p, let n be the number of binary digits
of p, and let 2e be the maximum power of 2 which divides p− 1. With respect to
the expected number of operations, and averaged over all quadratic residue and
non-residue inputs, the algorithm of Cipolla (neglecting the sums) is better than
the algorithm of Tonelli and Shanks if and only if e(e− 1) > 8n+ 20. ut

4 The Existence of Primes

For each i = 1, 2, . . ., we define pi to be the least prime number such that
pi ≡ 2i + 1 (mod 2i+1). Let ni be the number of binary digits of pi, and let 2ei
be the maximum power of 2 which divides pi − 1. From the definition is clear
that ei = i, and ni > i. We now give an upper bound for ni.

Lemma 4.1. There exists absolute constants L,C such that eiL+ C > ni.

Proof. A theorem of Linnik [6, 7] states that if (a,m) = 1 then the least prime
number congruent to a modulo m is less than C0m

L for some absolute constants
C0, L. Applying this to pi we get

pi < C02(ei+1)L . (3)

Taking base 2 logarithms, we conclude that ni < eiL+ C. ut

Remark. The best known unconditional value for L is 11/2, due to Heath-
Brown [4]. Assuming the Generalized Riemann Hypothesis, one can use L = 2+ε
for arbitrary ε > 0 [1, 4]. In the case in hand, where the modulus are all powers
of two, there may be even stronger results. For example, in [1] the authors prove
that one can use L = 8/3 + ε provided the modulus are restricted to powers of
a fixed odd prime.

In the following theorem, TS(p) and Cip(p) are the expected number of op-
erations required for the prime p by the algorithms of Tonelli and Shanks and
by the algorithm of Cipolla respectively, averaged over all quadratic residue and
non-residue inputs.



Theorem 4.2.

lim sup
p prime

TS(p)
Cip(p)

=∞ . (4)

Proof. From Corollary 2.3 and Proposition 3.2 we know that

TS(pi) >
ei(ei − 1)

4
>

(ni − C)(ni − C − L)
4L2

= Ω(n2
i ) (5)

and that Cip(pi) = O(ni) (even counting the sums and the Legendre symbol
computations). Therefore TS(pi)

Cip(pi)
= Ω(ni), and the theorem follows. ut

5 Last Remarks

I thank the referee for pointing me to the work of Bernstein [2]. In this work,
Bernstein improves the algorithm of Tonelli and Shanks. He computes discrete
logarithms several bits at a time by means of some auxiliar precomputations.
This is especially appealing if one needs to compute several square roots modulo
the same prime number, but the improvement is still good for the casual use, if
the number of bits computed at a time, and with it the amount of precomputa-
tion, is choosen apropriately.

Taking into account the precomputations for this new algorithm, Theorem 4.2
is still valid, but Theorem 3.3 would have to be changed; according to [2] the
new algorithm is better than the algorithm of Cipolla when e2 = O(n(lg n)2).

References

1. Barban, M.B., Linnik, Y.V., Tshudakov, N.G.: On prime numbers in an arithmetic
progression with a prime-power difference. Acta Arith. 9 (1964) 375–390

2. Bernstein, D.J.: Faster square roots in annoying finite fields, draft. Available from
http://cr.yp.to/papers.html (2001)

3. Cipolla, M.: Un metodo per la risoluzione della congruenza di secondo grado. Rend.
Accad. Sci. Fis. Mat. Napoli 9 (1903) 154–163

4. Heath-Brown, D.R.: Zero-free regions for Dirichlet L-functions, and the least prime
in an arithmetic progression. Proc. London Math. Soc. (3) 64 (1992) 265–338

5. Lindhurst, S.: An analysis of Shanks’s algorithm for computing square roots in finite
fields. In: Number theory (Ottawa, ON, 1996). Amer. Math. Soc., Providence, RI
(1999) 231–242

6. Linnik, U.V.: On the least prime in an arithmetic progression. I. The basic theorem.
Rec. Math. [Mat. Sbornik] N.S. 15(57) (1944) 139–178

7. Linnik, U.V.: On the least prime in an arithmetic progression. II. The Deuring-
Heilbronn phenomenon. Rec. Math. [Mat. Sbornik] N.S. 15(57) (1944) 347–368

8. Shanks, D.: Five number-theoretic algorithms. In: Proceedings of the Second Man-
itoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man.,
1972). Utilitas Math., Winnipeg, Man. (1973) 51–70. Congressus Numerantium,
No. VII

9. Tonelli, A.: Bemerkung über die Auflösung quadratischer Congruenzen. Göttinger
Nachrichten (1891) 344–346


