Práctico 1

La siguiente lista de ejercicios pretende servir para testear y consolidar los conocimientos adquiridos en el curso. Trata sobre los temas previos a la introducción del concepto de Entropía. Como referencia, se puede consultar el Libro "Fundamentos de Teoria Ergódica" de M. Viana y K. Oliveira (capítulos 1 al 8); o los capítulos I y II del libro de Mañé "Teoria Ergódica".

- 1. a) Sea $f: U \to U$ un difeomorfismo de un abierto de \mathbb{R}^d . Mostrar que f preserva Lebesgue si y solamente si para todo $x \in U$ se cumple que $|\det(D_x f)| = 1$.
 - b) Dada una variedad Riemanniana M, definir el concepto de determinante respecto a la forma de volumen inducida por la métrica de forma tal que la parte anterior se extienda a variedades.
 - c) Encontrar un concepto similar para flujos involucrando la divergencia del campo que genera el flujo.
- 2. (**Teorema de Kač**) Sea $T: X \to X$ que preserva μ de probabilidad. Dado $E \subset X$ medible, definimos $\rho_E: E \to \mathbb{Z}_{>0} \cup \{\infty\}$ tal que $\rho_E(x)$ es el minimo $n \ge 1$ tal que $T^n(x) \in E$. Sea \hat{E} el conjunto de puntos de X tal que $\rho_E(x) = \infty$. Entonces:

$$\int_{E} \rho_{E} d\mu = 1 - \mu(\hat{E})$$

en particular ρ_E es integrable en E.

- 3. Para $T: X \to X$ continua decimos que $x \in X$ es no-errante (y lo notamos $x \in \Omega(T)$) si para todo entorno U de x existe n > 0 tal que $T^n(U) \cap U$. Mostrar que si T preserva μ de probabilidad, entonces $\text{sop}(\mu) = \{x \in X : \forall \varepsilon > 0 , \mu(B_{\varepsilon}(x)) > 0\}$ está contenido en $\Omega(T)$.
- 4. Mostrar que si $T:[0,1] \to [0,1]$ es medible y preserva Lebesgue entonces casi todo punto $x \in [0,1]$ cumple que $\liminf_n (n|T^n(x)-x|) \le 1$.
- 5. Sea $T:X\to X$ transformación continua que preserva μ de probabilidad.
 - a) Mostrar que si existe $\mathcal{D} \subset L^1(X,\mu)$ tal que para todo $\varphi \in \mathcal{D}$ existe una constante c_{φ} tal que $\frac{1}{n}S_n\varphi \to c_{\varphi}$ entonces μ es ergódica. Recordar que $S_n\varphi(x) = \sum_{i=0}^{n-1} \varphi(T^i(x))$.
 - b) Mostrar que existen funciones $T:X\to X$ continuas no ergódicas respecto a μ tal que toda función continua T-invariante es constante.
 - c) Buscar una razón por la cual las dos partes anteriores están en el mismo ejercicio.
- 6. Dada μ invariante para $T: X \to X$ denotamos

$$B(\mu) = \{ x \in X : \frac{1}{n} S_n \varphi(x) \to \int \varphi d\mu , \forall \varphi \in C^0(X, \mathbb{R}) \}$$

Mostrar que $B(\mu)$ es T-invariante y que μ es ergódica si y solo si $\mu(B(\mu)) = 1$.

- 7. Mostrar que Lebesgue casi todo punto $x \in [0,1)$ verifica que si $0, a_1 a_2 \dots a_n \dots$ es su expansión decimal, entonces se cumple que $\frac{1}{n}(a_1 + \dots + a_n) \to \frac{9}{2}$.
- 8. a) Mostrar que si μ y ν son medidas ergódicas entonces son mutuamente singulares.
 - b) Sea $T: X \to X$ continua que preserva una medida ergódica μ y sea η una medida (posiblemente no T-invariante) absolutamente continua respecto a μ . Mostrar que $\frac{1}{n} \sum_{i=0}^{n-1} (T^i)_* \eta$ converge a μ con la topología débil estrella.
- 9. Mostrar que si $\mu \times \mu$ es ergódica para $T \times T : X \times X \to X \times X$ entonces T^k es ergódica respecto a μ para todo $k \geq 1$. Mostrar que de hecho es weak-mixing. Dar ejemplo donde T^k es ergódica para todo $k \geq 1$ pero $T \times T$ no es ergódica respecto a $\mu \times \mu$.
- 10. Sea $A \in GL(d,\mathbb{Z})$ una matriz invertible de coeficientes enteros con un valor propio λ de módulo 1 y ángulo racional. Mostrar que existe una función $\varphi : \mathbb{T}^d \to \mathbb{R}$ no constante e invariante por la transformación inducida por A en \mathbb{T}^d .
- 11. Mostrar que si $T: X \to X$ es continua y preserva μ de forma que para una cierta función continua φ se tiene que $\int \varphi d\mu \ge 0$ entonces existe μ' ergódica tal que $\int \varphi d\mu \ge 0$.
- 12. (Sustituciones) Sea $A = \{0,1\}$ un alfabeto y consideramos dos palabras finitas s_0 y s_1 con letras en A. Inductivamente, podemos construir una palabra p_k comenzando con $p_0 = 0$ y construyendo p_k mediante la sustitución de cada 0 en p_{k-1} por s_0 y cada 1 en p_{k-1} por s_1 . Asumimos que s_0 y s_1 cumplen tienen ambas letras (en particular, son de longitud mayor que 1; una propiedad un poco más general llama sustitución primitiva o aperiódica, ver Ejemplo 6.3.10 en el Libro de Viana y Oliveira). Para cada $\{a_n\} \in \{0,1\}^{\mathbb{N}}$ definimos $S(\{a_n\})$ como la sucesión obtenida cambiando cada a_n por s_{a_n} .
 - a) Si s_0 comienza con 0 y tiene más de una letra. Probar que S tiene un único punto fijo que empieza con 0.
 - b) Sea X la clausura de la órbita de dicho punto fijo por el shift. Mostrar que es un conjunto invariante minimal.
 - c) Mostrar que para la sustitución $s_0 = 01$ y $s_1 = 10$ obtenemos un conjunto minimal y únicamente ergódico.
- 13. Sea $T: X \to X$ que preserva μ en un espacio métrico X. Mostrar que μ es mixing si y solo si para toda ν absolutamente continua respecto a μ se cumple que $(T^n)_*(\nu) \to \mu$ en la topología débil *.
- 14. Mostrar que las rotaciones irracionales son ergodicamente equivalentes si y solamente si son espectralmente equivalentes.
- 15. Intentar una clasificación espectral y/o ergódica de las translaciones en toros de dimensión mayor.
- 16. Sea $T: X \to X$ transformación invertible que preserva μ (que no tiene átomos). Mostrar que para todo $\lambda \in S^1$ existe sucesión $\varphi_n \in L^2(\mu)$ tal que $||U_T(\varphi_n) \lambda \varphi_n||_2 \to 0$. Deducir que el espectro de U_T coincide con el círculo unitario.
- 17. Mostrar que se puede definir una noción de *cantidad de preimagenes* para transformaciones medibles y demostrar que es un invariante por equivalencia ergódica. Concluir que el shift bilateral no es ergodicamente equivalente al shift unilateral.