Partial hyperbolicity and attracting regions in 3-dimensional manifolds

Rafael Potrie

Thesis defense

Advisors: Sylvain Crovisier and Martín Sambarino rpotrie@cmat.edu.uy

July 3rd 2012

Understand "typical" behaviour of orbits of "typical" dynamics.

Understand "typical" behaviour of orbits of "typical" dynamics. Two approaches:

- Study of attracting regions (semilocal study).

Understand "typical" behaviour of orbits of "typical" dynamics. Two approaches:

- Study of attracting regions (semilocal study).
- Understand global robust dynamical behaviour.

Theorem (Araujo '89, unpublished)

In surfaces, C¹-generic diffeomorphisms admit hyperbolic attractors.

Theorem (Araujo '89, unpublished)

In surfaces, C^1 -generic diffeomorphisms admit hyperbolic attractors.

Higher dimensions: Bonatti-Li-Yang provided the first examples of dynamics without attractors in a robust fashion (C^r -generically in C^r -open sets).

These examples pose a number of questions:

- Structure of quasi-attractors.

Theorem (Araujo '89, unpublished)

In surfaces, C^1 -generic diffeomorphisms admit hyperbolic attractors.

Higher dimensions: Bonatti-Li-Yang provided the first examples of dynamics without attractors in a robust fashion (C^r -generically in C^r -open sets).

These examples pose a number of questions:

- Structure of quasi-attractors.
- Basin problem, ergodic attractors, Milnor attractors.

Conley's theory: $f : X \to X$ homeomorphism of a compact metric space, $\exists \varphi : X \to \mathbb{R}$ such that:

- $\varphi(f(x)) \leq \varphi(x)$ for every x.
- $\varphi(f(x)) = x$ if and only if x is *chain-recurrent*.
- Each chain-recurrence class attains different values for φ . The image of the chain-recurrence set has empty interior.

Conley's theory: $f : X \to X$ homeomorphism of a compact metric space, $\exists \varphi : X \to \mathbb{R}$ such that:

- $\varphi(f(x)) \leq \varphi(x)$ for every x.
- $\varphi(f(x)) = x$ if and only if x is *chain-recurrent*.
- Each chain-recurrence class attains different values for φ . The image of the chain-recurrence set has empty interior.

x is *chain-recurrent* if $\forall \varepsilon$ exists ε -pseudo-orbit from x to x: i.e. $x = z_0, \ldots z_k = x$ with $k \ge 1$ and $d(z_{i+1}, f(z_i)) < \varepsilon$.

The set of chain-recurrent points CR(f) is partitioned into *chain-recurrence* classes: $x \sim y$ if $\forall \varepsilon$ there exists ε -pseudo-orbit from x to y and from y to x.

Definition (Quasi-attractors)

A chain recurrence class Q is a *quasi-attractor* if it admits a basis of neighborhoods U_n such that $f(\overline{U_n}) \subset U_n$.

Definition (Quasi-attractors)

A chain recurrence class Q is a *quasi-attractor* if it admits a basis of neighborhoods U_n such that $f(\overline{U_n}) \subset U_n$.

Definition (Attractors)

A quasi-attractor is an *attractor* if it is isolated as chain-recurrence class.

If Q is a quasi-attractor of a C^1 -generic diffeomorphism having a dissipative periodic orbit, then it admits a dominated splitting.

If Q is a quasi-attractor of a C^1 -generic diffeomorphism having a dissipative periodic orbit, then it admits a dominated splitting.

The existence of a periodic point is a necessary hypothesis (Bonatti-Diaz).

If Q is a quasi-attractor of a C^1 -generic diffeomorphism having a dissipative periodic orbit, then it admits a dominated splitting.

The existence of a periodic point is a necessary hypothesis (Bonatti-Diaz). Dissipativeness is not clear.

Definition

A compact *f*-invariant set Λ has a *dominated splitting* if $T_{\Lambda}M = E \oplus F$ is a *Df*-invariant splitting and $\exists N \geq 0$ s.t. $\forall x \in \Lambda$ and $\forall v_E \in E(x)$ and $\forall v_F \in F(x)$ unit vectors we have:

$$\|Df^N v_E\| < \frac{1}{2} \|Df^N v_F\|$$

Definition

A compact *f*-invariant set Λ has a *dominated splitting* if $T_{\Lambda}M = E \oplus F$ is a *Df*-invariant splitting and $\exists N \geq 0$ s.t. $\forall x \in \Lambda$ and $\forall v_E \in E(x)$ and $\forall v_F \in F(x)$ unit vectors we have:

$$\|Df^N v_E\| < \frac{1}{2} \|Df^N v_F\|$$

One can have splittings into more bundles: $T_{\Lambda}M = E_1 \oplus \ldots \oplus E_k$.

Definition

A compact *f*-invariant set Λ has a *dominated splitting* if $T_{\Lambda}M = E \oplus F$ is a *Df*-invariant splitting and $\exists N \geq 0$ s.t. $\forall x \in \Lambda$ and $\forall v_E \in E(x)$ and $\forall v_F \in F(x)$ unit vectors we have:

$$\|Df^N v_E\| < \frac{1}{2} \|Df^N v_F\|$$

One can have splittings into more bundles: $T_{\Lambda}M = E_1 \oplus \ldots \oplus E_k$.

A *Df*-invariant bundle *E* is uniformly contracting (resp. uniformly expanding) if $\exists N > 0$:

$$\|Df^{N}|_{E}\| < \frac{1}{2}$$
 (resp. $\|Df^{-N}|_{E}\| < \frac{1}{2}$)

If Q is a quasi-attractor of a C^1 -generic diffeomorphism having a dissipative periodic orbit, then it admits a dominated splitting.

Difficulty: We do not know if the points after bifurcation lie inside the class.

If Q is a quasi-attractor of a C^1 -generic diffeomorphism having a dissipative periodic orbit, then it admits a dominated splitting.

Difficulty: We do not know if the points after bifurcation lie inside the class.

We overcome by using Gourmelon's Franks Lemma, Bonatti-Bochi's cocyle perturbation techniques and Lyapunov stability.

Corollary

For C^1 -generic diffeomorphisms we know:

- In dimension 2, if Q is a bi-Lyapunov stable homoclinic class then $Q = \mathbb{T}^2$ and f is Anosov.
- In dimension 3, a bi-Lyapunov stable homoclinic class has non-empty interior.
- In any dimension we know they admit some dominated splitting.

Bi-Lyapunov classes for C^1 -generic diffeomorphisms are classes which are both quasi-attractors and quasi-repellers.

- Either there are robustly finitely many chain-recurrence classes (**Tame dynamics**)

- Either there are robustly finitely many chain-recurrence classes (**Tame dynamics**)
- C^1 -generic diffeomorphisms in a neighborhood \mathcal{U} of f have infinitely many chain-recurrence classes (**Wild dynamics**).

- Either there are robustly finitely many chain-recurrence classes (**Tame dynamics**)
- C^1 -generic diffeomorphisms in a neighborhood \mathcal{U} of f have infinitely many chain-recurrence classes (**Wild dynamics**).

Question

Can a C^1 -generic diffeomorphism have *countably* infinitely many chain-recurrence classes?

- Either there are robustly finitely many chain-recurrence classes (**Tame dynamics**)
- C^1 -generic diffeomorphisms in a neighborhood \mathcal{U} of f have infinitely many chain-recurrence classes (**Wild dynamics**).

Question

Can a C^1 -generic diffeomorphism have *countably* infinitely many chain-recurrence classes?

Would be opposed with concept of Viral Dynamics.

There exists \mathcal{U} open in Diff^r(\mathbb{T}^3) ($r \ge 1$) such that there exists a residual subset $\mathcal{G} \subset \mathcal{U}$ such that:

- For every $f \in U$, f has a unique quasi-attractor Q which is a Milnor attractor (and if f is C^2 it admits a unique SRB measure).
- For every $f \in U$ if $R \neq Q$ is a chain-recurrence class, R is contained in a periodic normally expanding two-dimensional disk.
- For every $f \in \mathcal{G}$ the diffeomorphism f has no attractors (the quasi-attractor is not isolated).

$$\frac{1}{n}\sum_{i=0}^{n-1}\varphi(f^i(x))\to\int\varphi d\mu$$

12 / 26

$$\frac{1}{n}\sum_{i=0}^{n-1}\varphi(f^i(x))\to\int\varphi d\mu$$

Sometimes called *ergodic attractors*

$$\frac{1}{n}\sum_{i=0}^{n-1}\varphi(f^i(x))\to\int\varphi d\mu$$

Sometimes called *ergodic attractors*

A weaker notion is that of *Milnor attractor* which is a compact invariant set Λ such that there is a positive Lebesgue measure set of points whose omega-limit set is contained in Λ .

$$\frac{1}{n}\sum_{i=0}^{n-1}\varphi(f^i(x))\to\int\varphi d\mu$$

Sometimes called *ergodic attractors*

A weaker notion is that of *Milnor attractor* which is a compact invariant set Λ such that there is a positive Lebesgue measure set of points whose omega-limit set is contained in Λ .

Seems well suited for C^1 -dynamics where we do not control distortion.

There exists \mathcal{U} open in $\text{Diff}^r(\mathbb{T}^3)$ $(r \ge 1)$ such that there exists a residual subset $\mathcal{G} \subset \mathcal{U}$ such that:

- For every $f \in U$, f has a unique quasi-attractor Q which is a Milnor attractor (and if f is C^2 it admits a unique SRB measure).
- For every $f \in U$ if $R \neq Q$ is a chain-recurrence class, R is contained in a periodic normally expanding two-dimensional disk.
- For every $f \in \mathcal{G}$ the diffeomorphism f has no attractors (Q is not isolated).

There exists \mathcal{U} open in $\text{Diff}^r(\mathbb{T}^3)$ $(r \ge 1)$ such that there exists a residual subset $\mathcal{G} \subset \mathcal{U}$ such that:

- For every $f \in U$, f has a unique quasi-attractor Q which is a Milnor attractor (and if f is C^2 it admits a unique SRB measure).
- For every $f \in U$ if $R \neq Q$ is a chain-recurrence class, R is contained in a periodic normally expanding two-dimensional disk.
- For every $f \in \mathcal{G}$ the diffeomorphism f has no attractors (Q is not isolated).
- We can do this also on any manifold (of dimension \geq 3) but we do not know about the SRB measure.

There exists \mathcal{U} open in $\text{Diff}^r(\mathbb{T}^3)$ $(r \ge 1)$ such that there exists a residual subset $\mathcal{G} \subset \mathcal{U}$ such that:

- For every $f \in U$, f has a unique quasi-attractor Q which is a Milnor attractor (and if f is C^2 it admits a unique SRB measure).
- For every $f \in U$ if $R \neq Q$ is a chain-recurrence class, R is contained in a periodic normally expanding two-dimensional disk.
- For every $f \in \mathcal{G}$ the diffeomorphism f has no attractors (Q is not isolated).
- We can do this also on any manifold (of dimension \geq 3) but we do not know about the SRB measure.
- The examples of Bonatti-Li-Yang are accumulated by classes which are not in disks (Bonatti-Shinohara).

There exists \mathcal{U} open in $\text{Diff}^r(\mathbb{T}^3)$ $(r \ge 1)$ such that there exists a residual subset $\mathcal{G} \subset \mathcal{U}$ such that:

- For every $f \in U$, f has a unique quasi-attractor Q which is a Milnor attractor (and if f is C^2 it admits a unique SRB measure).
- For every $f \in U$ if $R \neq Q$ is a chain-recurrence class, R is contained in a periodic normally expanding two-dimensional disk.
- For every $f \in \mathcal{G}$ the diffeomorphism f has no attractors (Q is not isolated).
- We can do this also on any manifold (of dimension \geq 3) but we do not know about the SRB measure.
- The examples of Bonatti-Li-Yang are accumulated by classes which are not in disks (Bonatti-Shinohara).
- If Smale conjecture (dimension 2) is true one would obtain (generic) examples with countably many chain-recurrence classes.

Rafael Potrie (UdelaR)

PH and attracting regions in 3-manifolds

July 3rd 2012 13 / 26

The example is based on Carvalho's example (and Bonatti-Viana's construction).

The example is based on Carvalho's example (and Bonatti-Viana's construction).

It is semiconjugated to the linear Anosov and partially hyperbolic (i.e. there is a dominated splitting $T\mathbb{T}^3 = E^{cs} \oplus E^u$ and E^u is uniformly expanding).

The example is based on Carvalho's example (and Bonatti-Viana's construction).

It is semiconjugated to the linear Anosov and partially hyperbolic (i.e. there is a dominated splitting $T\mathbb{T}^3 = E^{cs} \oplus E^u$ and E^u is uniformly expanding).

Main ingredient: A mechanism that guaranties chain-recurrence classes different from the quasi-attractor are contained in the preimages of periodic points by the semiconjugacy.
The example is based on Carvalho's example (and Bonatti-Viana's construction).

It is semiconjugated to the linear Anosov and partially hyperbolic (i.e. there is a dominated splitting $T\mathbb{T}^3 = E^{cs} \oplus E^u$ and E^u is uniformly expanding).

Main ingredient: A mechanism that guaranties chain-recurrence classes different from the quasi-attractor are contained in the preimages of periodic points by the semiconjugacy.

Key point: The boundary of the fibers of the semiconjugacy are contained in the quasi-attractor. Fibers are invariant under unstable holonomy.

Natural question: Is an attractor of a C^1 -generic diffeomorphism robustly transitive?

Natural question: Is an attractor of a C^1 -generic diffeomorphism robustly transitive? With C.Bonatti,S.Crovisier and N.Gourmelon we proved:

Theorem

There exist open sets of diffeomorphisms where isolated chain recurrence classes which are not robustly transitive (in any C^r -topology, $r \ge 1$).

Our examples are not quasi-attractors, it remains open whether it can be done for quasi-attractors.

Motivated by the examples above which are globally partially hyperbolic, we studied global partial hyperbolicity in $\mathbb{T}^3.$

Motivated by the examples above which are globally partially hyperbolic, we studied global partial hyperbolicity in \mathbb{T}^3 . Generalizing results of Mañe in dimension 2 we have:

Theorem (Diaz-Pujals-Ures)

 $f: M^3 \to M^3$ is robustly transitive then f is partially hyperbolic.

Motivated by the examples above which are globally partially hyperbolic, we studied global partial hyperbolicity in \mathbb{T}^3 . Generalizing results of Mañe in dimension 2 we have:

Theorem (Diaz-Pujals-Ures)

 $f: M^3 \to M^3$ is robustly transitive then f is partially hyperbolic.

Two kinds of partial hyperbolicity: $T\mathbb{T}^3 = E^{cs} \oplus E^u$ and strong: $T\mathbb{T}^3 = E^s \oplus E^c \oplus E^u$.

Understand the relationship between:

- Robust dynamical behavior.
- Invariant geometric structures.
- Topological properties.

Understand the relationship between:

- Robust dynamical behavior.
- Invariant geometric structures.
- Topological properties.

(Pujals-Bonatti-Wilkinson) Proposal for classification of strong partially hyperbolic transitive diffeomorphisms in dimension 3.

Understand the relationship between:

- Robust dynamical behavior.
- Invariant geometric structures.
- Topological properties.

(Pujals-Bonatti-Wilkinson) Proposal for classification of strong partially hyperbolic transitive diffeomorphisms in dimension 3.

The classification is *modulo center foliations*.

Definition

Let $f: M \to M$ be partially hyperbolic (i.e. it has a dominated splitting $TM = E \oplus F$ with either E uniformly contracting or F uniformly expanding). We say that f is dynamically coherent if there exist f-invariant foliations \mathcal{F}_E and \mathcal{F}_F tangent respectively to E and F.

Definition

Let $f: M \to M$ be partially hyperbolic (i.e. it has a dominated splitting $TM = E \oplus F$ with either E uniformly contracting or F uniformly expanding). We say that f is dynamically coherent if there exist f-invariant foliations \mathcal{F}_E and \mathcal{F}_F tangent respectively to E and F.

The uniform bundles are always uniquely integrable (Hirsch-Pugh-Shub 1970's).

Definition

Let $f: M \to M$ be partially hyperbolic (i.e. it has a dominated splitting $TM = E \oplus F$ with either E uniformly contracting or F uniformly expanding). We say that f is dynamically coherent if there exist f-invariant foliations \mathcal{F}_E and \mathcal{F}_F tangent respectively to E and F.

The uniform bundles are always uniquely integrable (Hirsch-Pugh-Shub 1970's).

Definition

A partially hyperbolic diffeomorphism f (with splitting $TM = E^{cs} \oplus E^{u}$) is almost dynamically coherent if there exists a foliation \mathcal{F} transverse to E^{u} .

It is an open and closed property!

In dimension 3.

Definition

A diffeomorphism $f: M^3 \rightarrow M^3$ is strongly partially hyperbolic (SPH) if there exist a dominated splitting

$$TM = E^s \oplus E^c \oplus E^u$$

into one-dimensional bundles. E^s is uniformly contracting and E^u is uniformly expanding.

In dimension 3.

Definition

A diffeomorphism $f: M^3 \rightarrow M^3$ is strongly partially hyperbolic (SPH) if there exist a dominated splitting

$$TM = E^s \oplus E^c \oplus E^u$$

into one-dimensional bundles. E^s is uniformly contracting and E^u is uniformly expanding.

Dynamical coherence: All the subbundles ($E^s \oplus E^c$, $E^c \oplus E^u$ and E^c) are integrable to a *f*-invariant foliation.

Theorem (Brin-Burago-Ivanov)

Under a stronger (absolute) version of SPH, if $f : \mathbb{T}^3 \to \mathbb{T}^3$ is SPH then it is dynamically coherent.

This was used by Hammerlindl to get *leaf conjugacy*.

Theorem (Brin-Burago-Ivanov)

Under a stronger (absolute) version of SPH, if $f : \mathbb{T}^3 \to \mathbb{T}^3$ is SPH then it is dynamically coherent.

This was used by Hammerlindl to get *leaf conjugacy*.

Theorem (Rodriguez Hertz-Rodriguez Hertz-Ures)

There exists a (non transitive) SPH diffeomorphism in \mathbb{T}^3 which is NOT dynamically coherent.

Theorem

Let $f : \mathbb{T}^3 \to \mathbb{T}^3$ a PH diffeomorphism isotopic to Anosov and almost dynamically coherent. Then f is dynamically coherent.

Theorem

Let $f : \mathbb{T}^3 \to \mathbb{T}^3$ a PH diffeomorphism isotopic to Anosov and almost dynamically coherent. Then f is dynamically coherent.

Theorem

Let $f : \mathbb{T}^3 \to \mathbb{T}^3$ a SPH diffeomorphism.

- Either there exists a repelling torus T tangent to $E^s \oplus E^u$ or,
- There exists an f-invariant foliation \mathcal{F}^{cs} tangent to $E^s \oplus E^c$.

Theorem

Let $f : \mathbb{T}^3 \to \mathbb{T}^3$ a PH diffeomorphism isotopic to Anosov and almost dynamically coherent. Then f is dynamically coherent.

Theorem

Let $f : \mathbb{T}^3 \to \mathbb{T}^3$ a SPH diffeomorphism.

- Either there exists a repelling torus T tangent to $E^s \oplus E^u$ or,
- There exists an f-invariant foliation \mathcal{F}^{cs} tangent to $E^s \oplus E^c$.

Corollary

If $f : \mathbb{T}^3 \to \mathbb{T}^3$ is SPH and $\Omega(f) = \mathbb{T}^3$ then f is dynamically coherent.

To prove the previous theorems, we must improve slightly some well known results on codimension one foliations:

To prove the previous theorems, we must improve slightly some well known results on codimension one foliations:

Classification in \mathbb{T}^3 : We give a classification of foliations without torus leaves in \mathbb{T}^3 .

To prove the previous theorems, we must improve slightly some well known results on codimension one foliations:

Classification in \mathbb{T}^3 : We give a classification of foliations without torus leaves in \mathbb{T}^3 .

Global product structure: We give a quantitative version of how small must the holonomy be with respect to the local product structure in order to get global product structure.

- Let $f: M^3 \to M^3$ be a SPH diffeomorphism.
 - (Burago-Ivanov) f is almost dynamically coherent.

Let $f: M^3 \to M^3$ be a SPH diffeomorphism.

- (Burago-Ivanov) f is almost dynamically coherent.
- (Brin-Burago-Ivanov)If M = T³. f_{*} : R³ → R³ is SPH (either f_{*} is hyperbolic or f_{*} "is" Anosov×Id_{S1}).

• Structure of Reebless foliations.

- Structure of Reebless foliations.
- Global product structure is enough

- Structure of Reebless foliations.
- Global product structure is enough
- Separate on cases:

- Structure of Reebless foliations.
- Global product structure is enough
- Separate on cases:
 - *f*_{*} is Anosov: Easy case (codimension one foliations without holonomy have global product structure)

- Structure of Reebless foliations.
- Global product structure is enough
- Separate on cases:
 - *f*_{*} is Anosov: Easy case (codimension one foliations without holonomy have global product structure)
 - f_* is Anosov× Id_{S^1} : We discuss depending on the invariant subspaces close to the foliations:

- Structure of Reebless foliations.
- Global product structure is enough
- Separate on cases:
 - *f*_{*} is Anosov: Easy case (codimension one foliations without holonomy have global product structure)
 - f_* is Anosov× Id_{S^1} : We discuss depending on the invariant subspaces close to the foliations:
 - The plane projects into a torus: We find a repelling torus.

- Structure of Reebless foliations.
- Global product structure is enough
- Separate on cases:
 - *f*_{*} is Anosov: Easy case (codimension one foliations without holonomy have global product structure)
 - f_* is Anosov× Id_{S^1} : We discuss depending on the invariant subspaces close to the foliations:
 - The plane projects into a torus: We find a repelling torus.
 - The plane close to the center stable leaf is the center unstable plane: Estimate growth of diameter and apply Novikov's theorem.

- Understand the attracting regions in 3-dimensional manifolds. Quasi-atractors, new examples, classification.

- Understand the attracting regions in 3-dimensional manifolds. Quasi-atractors, new examples, classification.
- Study partial hyperbolicity in other 3-manifolds. Leaf conjugacy results.

- Understand the attracting regions in 3-dimensional manifolds. Quasi-atractors, new examples, classification.
- Study partial hyperbolicity in other 3-manifolds. Leaf conjugacy results.
- Obtain dynamical consequences from the existence of foliations.

- Understand the attracting regions in 3-dimensional manifolds. Quasi-atractors, new examples, classification.
- Study partial hyperbolicity in other 3-manifolds. Leaf conjugacy results.
- Obtain dynamical consequences from the existence of foliations.

With Hammerlindl, we have obtained leaf conjugacy for SPH diffeos in \mathbb{T}^3 and nilmanifolds. We have advanced in the Solvemanifold case.

Thanks! Gracias! Merci!