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The context is ẋ = f(x), f(0) = 0 with f ∈ C1(Rn, Rn). The time t of
the flow will be denoted by f t.

Definition
We say that the origin is almost globally stable (a.g.s.) if and only if
Rc = {y : limt→+∞ f t(y) 6= 0} has zero Lebesgue measure.

Theorem (Rantzer 2001)
If there exists ρ ∈ C1(Rn\{0}, R) non-negative such that ∇ · (ρf) > 0
m− ae and ρf

|x| is integrable on Bc(0, ε) for all ε then the origin is a.g.s.

Definition
We call such a ρ a density function.
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The previous theorem can be restated in the following more general terms

Definition (Monzón 2004)
µ is a monotone measure if µ(Bc(0, ε)) < +∞ and 0 < µ(Y ) < +∞
implies

µ(f t(Y )) > µ(Y ) ∀t > 0

Theorem
If there exists a monotone measure then the origin is a.g.s.
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There are some results relating monotone measures with density
functions and showing how they mean the “same”. However, to study
local properties of dynamical systems near equilibria it is helpfull to
obtain differentiability, at least in a neighborhood of the origin.

We present the following result showing that the existence of a monotone
measure implies the existence of a density function (but we do not
achieve differentiability without further assumptions that we will show are
necessary)

Proposition
If there exists a monotone measure µ then, there exists a density function
g in L1(m) in the sense that there exists a monotone measure ν such
that ν(E) =

∫
E

gdm and such that

µ = ν + λ , λ ⊥ µ
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Example

{
ẋ1 = −x3

1

ẋ2 = −x2
1x2

Is a.g.s. but not locally asymptotically stable (l.a.s.)



Example

{
ẋ1 = x2

1 − x2
2

ẋ2 = 2x1x2

Is a.g.s. but does not admit a quadratic density function.
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Local properties

In [Monzón 2005], some relationships between a.g.s. and l.a.s. were
studied for planar systems. We try to extend those results to higher
dimensions.

Proposition:

a) If ∂f
∂x (0) has at least one eigenvalue λ such that Re(λ) > 0 then

m(R) = 0.
b) If there is one eigenvalue λ with Re(λ) < 0 and it admits a density

function then it is l.a.s.
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Example

 ẋ1 = x2
1 − x2

2

ẋ2 = 2x1x2

ẋ3 = −x3

Is a.g.s. but does not admit a density function because it has a negative
eigenvalue (-1) and it is not l.a.s.



Example  ẋ1 = x2 − 2x1x
2
3

ẋ2 = −x1 − 2x2x
2
3

ẋ3 = −x3
3

Is a.g.s. because it admits ρ = (x2
1 + x2

2 + x2
3)
−4 as a density function.

All the eigenvalues have zero real part but it is not l.a.s. (in the plane
x3 = 0, the system is an harmonic oscillator).



Sketch of the proof

I The idea is to use local invariant manifolds.

I Given a neighborhood of the origin, all points converging to it must
enter the neighborhood through a center stable manifold.

I Then, the set R must be contained in
⋃

n≥0 f−n(W cs
ε (0)), a

countable union of zero measure sets (since there is one eigenvalue
with positive real part).

REMARK: Although the center unstable manifold may not be unique,
all points converging to the origin must belong to all posible center
unstable manifold (Invariant Manifolds, Hirsch-Pugh-Shub) and then that
set has zero Lebesgue measure.
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Sketch of the proof

I To prove part b) of the Proposition we must use the following result
of [Rantzer 2001]:

Proposition
If ρ is a density function and ∇ · f ≤ 0 in a neighborhood of the origin
then V = ρ−1 is a Lyapunov function.

I Together with the fact that the existence of a density function
implies that all eigenvalues have non-positive real part (last
proposition) we conclude that ∇ · f < 0 in a neighborhood of 0 since
we have one eigenvalue with negative real part.
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Necessary conditions for almost global stability

We prove the following theorem generalizing one in [Monzón, 2003].

Theorem
Given a complete differential equation ẋ = f(x) with f ∈ C1 such that
the origin is a almost globally stable and locally asymptotically stable
fixed point for the flow f t, there exists a density ρ differentiable and with
continuous derivative up to a set of zero Lebesgue measure. Also, this
density can be constructed such that it is zero in the complement of the
basin of attraction.
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Sketch of the proof:

I As in [Monzón 2003], we conjugate the system with the field
ẏ = g(y) = −y using Massera’s theorem and the fact that the level
manifolds of a real valued function are diffeomorphic to a sphere (for
small regular values of the function)1.

I The conjugation allow us to “send” density and Lyapunov functions
from one side to the other.

I The difference with the case of [Monzón 2003] is that the conjugacy
is only defined in R which in our case may not be Rn.

1This is not known for dimension 4. Recently Perelman proved the result for a
homeomorphism
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Sketch of the proof:

I To achieve differentiability, the main idea is to notice that we have a
degree of freedom in choosing the density function for the field
y = −y (which admits a lot of density function) so we choose a
suitable one for our purposes.

I This implies a lot of work and since to inequalities must be satisfied
at the same time it is not posible to ensure de continuity of the
derivative of the density function on Rc.
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Conclusions

I We have put together several aspects of almost global stability,
monotone measures, density and Lyapunov functions and local and
global properties of equilibrium points.

I We have shown how local stability plus almost global stability of the
origin can be combined in order to construct a density function.

I We gave a first step into the generalization to higher dimensions of a
planar result for a.g.s. and l.a.s., leading to local properties of a.g.s.

I In future works, we will analyze the remaining case of zero
divergence, trying to establish conditions for local stability.
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