Práctico 4

De este práctico hay que entregar 4 ejercicios.

- 1. Mostrar que la función $x \mapsto -\log(x)$ es la única función continua ψ (a menos de multiplicación por constante positiva) de $(0,1] \to [0,\infty)$ tal que vale 0 en 1, es monótona decreciente y cumple que $\psi(xy) = \psi(x) + \psi(y)$.
- 2. Definimos, para dos particiones \mathcal{P} y \mathcal{Q} la entropía condicional de \mathcal{P} respecto de \mathcal{Q} como:

$$H_{\mu}(\mathcal{Q}|\mathcal{P}) = -\sum_{P \in \mathcal{P}} \sum_{Q \in \mathcal{Q}} \mu(P \cap Q) \log \frac{\mu(P \cap Q)}{\mu(P)}$$

Probar que si $\mathcal{P}, \mathcal{Q}, \mathcal{R}$ son particiones finitas:

- a) $H_{\mu}((\mathcal{P} \vee \mathcal{Q})|\mathcal{R}) = H_{\mu}(\mathcal{P}|\mathcal{R}) + H_{\mu}(\mathcal{Q}|(\mathcal{P} \vee \mathcal{R})).$
- b) Si $\mathcal{P} \prec \mathcal{Q}$ entonces $H_{\mu}(\mathcal{P}|\mathcal{R}) \leq H_{\mu}(\mathcal{Q}|\mathcal{R})$ y $H_{\mu}(\mathcal{R}|\mathcal{P}) \geq H_{\mu}(\mathcal{R}|\mathcal{Q})$.
- c) $\mathcal{P} \prec \mathcal{Q}$ si y solo si $H_{\mu}(\mathcal{P}|\mathcal{Q}) = 0$.
- 3. Probar que si $\mathcal{P} \prec \mathcal{Q}$ entonces $h_{\mu}(T, \mathcal{P}) \leq h_{\mu}(T, \mathcal{Q})$.
- 4. Sea $\mathcal{P}^n = \bigvee_{i=0}^{n-1} T^{-i}(\mathcal{P})$, mostrar que $h_{\mu}(T,\mathcal{P}) = h_{\mu}(T,\mathcal{P}^n)$. Si T es invertible, sea $\mathcal{P}^{\pm n} = \bigvee_{i=-n}^{n} T^{-i}(\mathcal{P})$, entonces $h_{\mu}(T,\mathcal{P}) = h_{\mu}(T,\mathcal{P}^{\pm n})$.
- 5. Recordar que si \mathcal{P} es una partición, entonces $\mathcal{P}(x)$ es el átomo que contiene a x. Demostrar que si T es weak mixing entonces $\mu(\mathcal{P}^n(x)) \to 0$ con n.
- 6. Mostrar que $h_{\mu}(T^k, \mathcal{P}) = kh_{\mu}(T, \mathcal{P})$ para $k \geq 0$. Mostrar que si T es invertible entonces $h_{\mu}(T^{-1}, \mathcal{P}) = h_{\mu}(T, \mathcal{P})$.
- 7. Sean (T, X, μ) y (S, Y, ν) transformaciones medibles, mostrar que $h_{\mu \times \nu}(T \times S) = h_{\mu}(T) + h_{\nu}(S)$.
- 8. Mostrar que si (T, X, μ) es una extensión de (S, Y, ν) (i.e. existe $H : (X, \mu) \to (Y, \nu)$ medible con $H_*\mu = \nu$ tal que $H \circ T = S \circ H$, o S es un factor de T) entonces $h_{\mu}(T) \geq h_{\nu}(S)$.
- 9. Suponga que μ_1, μ_2 son medidas ergódicas y $\mu = t\mu_1 + (1-t)\mu_2$ con $t \in (0,1)$ entonces $h_{\mu}(T) = th_{\mu_1}(T) + (1-t)h_{\mu_2}(T)$.
- 10. Dar un ejemplo de transformación continua T tal que existen sucesiones de medidas ergódicas μ_n que convergen débilmente a μ (también ergódica) de forma que $h_{\mu_n}(T) = 0$ pero $h_{\mu}(T) > 0$.

¹Notar que $H_{\mu}(\mathcal{Q}) = H_{\mu}(\mathcal{Q}|\mathcal{P})$ donde \mathcal{P} es la partición trivial.

- 11. Pensar un ejemplo de transformación que tenga entropía infinita. (Sugerencia: Restringirse a $T:[0,1] \to [0,1]$ que preserve Lebesgue. Considerar la partición en intervalos sugerida en el Ejemplo 9.1.4 del Libro de Viana-Oliveira de partición en numerables intervalos que tiene entropía infinita y considerar la transformación que manda de forma afín cada uno de esos intervalos en todo [0,1]. Mostrar que preserva Lebesgue, es ergódica y que la entropía tiene que ser infinita. Construir un ejemplo invertible a partir de este.)
- 12. Sea X un espacio métrico con la σ -álgebra de borel y sea $\mathcal{P}_1 \prec \mathcal{P}_2 \prec \ldots \prec \mathcal{P}_n \prec \ldots$ una sucesión de particiones finitas tal que para μ -ctp $x \in X$ se cumple que diam $\mathcal{P}_n(x) \to 0$. Mostrar que $h_{\mu}(T) = \lim_{n \to \infty} h_{\mu}(T, \mathcal{P}_n)$.
- 13. Una partición \mathcal{P} es generadora si \mathcal{P}^n genera los conjuntos medibles (mod 0). Mostrar que $h_{\mu}(T) = h_{\mu}(T, \mathcal{P})$. Si T es invertible, decimos que \mathcal{P} es generadora si $\mathcal{P}^{\pm n}$ genera los medibles (mod 0), mostrar que en este caso $h_{\mu}(T) = h_{\mu}(T, \mathcal{P})$.
- 14. Una transformación continua $T: X \to X$ se dice expansiva si existe $\alpha > 0$ tal que dados $x \neq y$ existe $n \in \mathbb{Z}$ tal que $d(T^n(x), T^n(y)) > \alpha$ (en el caso que T no fuese invertible, se pide $n \geq 0$). Mostrar que si \mathcal{P} es una partición finita cuyos átomos tienen diametro menor que α entonces \mathcal{P} es generadora.
- 15. Mostrar que si $T: X \to X$ es invertible y \mathcal{P} es una partición tal que $\bigvee_{i=0}^{\infty} T^{-i}(\mathcal{P})$ genera los conjuntos medibles (mod 0) entonces $h_{\mu}(T) = h_{\mu}(T, \mathcal{P}) = 0$.
- 16. Mostrar que si $T: X \to X$ es una transformación medible que no es invertible entonces existen conjuntos medibles A, B de medida positiva tal que T(A) = T(B). (Por las dudas, aclaramos que X tiene que ser un espacio de Lebesgue; y si ayuda, X es un espacio mtrico separable con la sigma algebra de Borel.)
- 17. Mostrar que si $T: X \to X$ preserva μ y es ergódica, entonces la cantidad de preimágenes de un punto está bien definida y es constante μ -ctp. Mostrar que si es mayor que 1 entonces la entropía es positiva.
- 18. Mostrar que si (T, \mathfrak{A}, μ) es un K-sistema con respecto a una sigma-álgebra \mathfrak{A}_0 entonces $L^2(X, \mathfrak{A}_0, \mu)$ es de dimensión infinita. Concluir que todos los K-sistemas son espectralmente equivalentes.
- 19. Mostar que si (T, μ) es invertible y un K-sistema, entonces T^{-1} también lo es.
- 20. Sea $T:(X,\mu)\to (X,\mu)$ una transformación preservando medida. Considerar $\mathcal{S}=\{A:h_{\mu}(T,\{A,A^c\})=0\}.$
 - a) Mostrar que S es una σ -álgebra².
 - b) Mostrar que si \mathcal{S} es la σ -álgebra trivial (mod 0) entonces T es mixing 3 .
- 21. Sea X un espacio métrico y sea μ una medida invariante por el shift bilateral $\sigma: B(X) \to B(X)$. Mostrar que si μ cumple que para todo cilindro C y $\varepsilon > 0$ existe N > 0 tal que si C' es un conjunto medible generado por cilindros de la forma $C_j(A_0, \ldots A_k)$ con $j \geq N$ se cumple que σ es un K-sistema.
- 22. (*) Mostrar que si una transformación $T:(X,\mu)\to (X,\mu)$ tiene entropía positiva, entonces su operador asociado U_T en $L^2(X,\mu)$ contiene espectro de Lebesgue de rango numerable (y posiblemente otras medidas espectrales, claramente).

²Llamada álgebra de Pinsker.

 $^{^3\}mathrm{De}$ hecho, vale que T es un K-sistema.

- 23. a) Sea μ una medida T-invariante y \mathcal{P} una partición finita tal que $\mu(\partial \mathcal{P}) = 0$. Demostrar que dado $\varepsilon > 0$ existe un entorno \mathcal{U} de μ en el espacio de probabilidades invariantes tal que si $\nu \in \mathcal{U}$ entonces $h_{\nu}(T, \mathcal{P}) \leq h_{\mu}(T, \mathcal{P}) + \varepsilon$.
 - b) Sea $T: X \to X$ una transformación continua y expansiva del espacio métrico X (i.e. existe $\delta > 0$ tal que si $x \neq y$ entonces existe $n \in \mathbb{Z}$ (o $n \in \mathbb{N}$ si T no es invertible) tal que $d(T^n(x), T^n(y)) > \delta$). Mostrar que la función $\mu \mapsto h_{\mu}(T)$ es semicontinua superiormente (i.e. si $\mu_n \to \mu$ entonces lím sup $h_{\mu_n}(T) \leq h_{\mu}(T)$).
 - c) Mostrar que T tiene una probabilidad invariante con entropía igual a $h_{top}(T)$.
- 24. Mostrar que si $T: X \to X$ es una transformación continua y expansiva y X contiene un arco no trivial entonces $h_{top}(T) > 0$. Dar un ejemplo de una transformación expansiva con entropía topológica nula.
- 25. Mostrar que un mapa continuo de grado d > 1 en el círculo tiene entropía topológica mayor o igual a $\log d$.
- 26. Mostrar sin usar el principio variacional que una transformación continua en un espacio métrico compacto donde el conjunto no-errante es finito tiene entropía topológica nula.