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Abstract. We present a proof of the (folklore) fact that there is a residual subset of Diff1(M2)
consisting of diffeomorphisms having an hyperbolic attractor. The proof is based on recent results
on generic dynamics. We continue by proving some results for generic diffeomorphisms in surfaces
with only finitely many sources.

1. Introduction

A main goal in differentiable dynamics is to describe the asymptotic behavior of “most” orbits

of “most” diffeomorphisms.

The point of view we adopt is that of generic dynamics, that is, to describe the dynamics of

open and dense, or residual (Gδ-dense) subsets of diffeomorphisms and points in the manifold. We

work mainly in the C1 category due to the fact that in higher topologies little is known on how

to perturb diffeomorphisms while controlling the dynamical effects of those perturbations.

For a survey on generic dynamics see [BDV] (chapter 10).

A main question in this context would be, is there an attractor for a generic diffeomorphism?,

that is, does there exist a residual subsetR ∈ Diff1(M) such that if f ∈ R then f has an attractor?

(see for example Problem 10.30 in [BDV]).

An attractor is a transitive set Λ such that it admits an open neighborhood U satisfying that

f(U) ⊂ U and such that Λ =
⋂
n≥0 f

n(U).

Recently Bonatti, Li and Yang have proved that the question has a false answer in dimensions

bigger or equal to 3 ([BLY]). In dimension 2, the result was announced to be true by Araujo

([A]) but the result was never published since there was a gap on its proof. However, with the

techniques of [PS] the gap in the proof can be arranged1 (though this was never written).

We prove here the following theorem which similar to the one by Araujo. The proof we give is

quite short but based on the recent developments of generic dynamics (mainly [ABC],[BC], [MP]

and [PS]).

Recall that a sink is a hyperbolic periodic point whose eigenvalues are all of modulus smaller

than one. An hyperbolic attractor is an attractor that admits a hyperbolic splitting (we shall

define this later).

Theorem 1.1. There is R ⊂ Diff1(M2), a Gδ dense subset of diffeomorphisms in the surface M2

such that for every f ∈ R, there is an hyperbolic attractor. Moreover, if f has finitely many sinks,

then f is essentially hyperbolic.

1This was communicated by Martin Sambarino.
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We say that f is essentially hyperbolic if it admits finitely many hyperbolic attractors and such

that the union of their basins cover an open and dense subset of M (Araujo proves that the basin

of atraction has Lebesgue measure one, his techniques work in this context too). This definition

comes from [PT] and is motivated by a new result of [CP] which closes a long standing problem

posed by Palis in [PT].

Theorem 1.2. There is R ⊂ Diff1(M2), a Gδ dense subset of diffeomorphisms in the surface M2

such that for every f ∈ R with finitely many sources satisfies that every homoclinic class which is

a quasi-attractor (see the definition in the next section) is an hyperbolic attractor.

In particular we get the following using results in [MP] and [BC]:

Corollary 1.1. There is R ⊂ Diff1(M2), a Gδ dense subset of diffeomorphisms in the surface M2

such that for every f ∈ R with finitely many sources satisfies that generic points converge either

to hyperbolic attractors or to aperiodic classes.

This last Corollary applies for example for the well known Henon attractor, in fact, since

hyperbolic attractors which are in a disc which is dissipative are sinks, in the Henon case we

get that there are no strange attractors (aperiodic quasi attractors for generic diffeos cannot be

attractors).

2. Some preliminaries

We shall present here some recent results we shall use in the proof of Theorem 1.1. To do that,

we shall explain more or less the idea of the proof.

First of all, we would like to prove the existence of hyperbolic attractors. The strategy will be

to concentrate in Lyapunov stable chain recurrence classes. We say that a compact invariant set

Λ is Lyapunov stable if for every U neighborhood of Λ, there exist V ⊂ U neighborhood of Λ such

that fn(V ) ⊂ U for every n ≥ 0. These will be the candidates for attractors.

We must define chain recurrence classes. We note x a y if ∀ε > 0 there is an ε−pseudo orbit

x = x0, . . . , xn = y. We denote as x à y to the equivalence relation (inside the chain recurrence

set, i.e. the points such that x a x) given by x a y and y a x. The classes of this equivalence

relation are called chain recurrence classes.

In [MP] it was proved that there exists a residual subset R ⊂ Diff1(M) such that for every

f ∈ R, there exist a residual subset Rf ⊂ M such that if x ∈ R then ω(x) is a Lyapunov stable

set.

This result was improved in [BC], using the connecting lemma for pseudo-orbits that allowed

them to prove a conjecture of Hurley. To state that, we shall say that a chain recurrence class Λ is a

quasi-attractor if there exists a nested sequence of open neighborhoods {Un} such that
⋂
n Un = Λ

and such that f(Un) ⊂ Un. In [BC] it is proved that a Lyapunov stable chain recurrence class is

in fact a quasi-attractor.

Theorem 2.1 ([MP],[BC]). There exist a residual subset RQ ⊂ Diff1(M) such that if f ∈ RQ

then there exist a residual subset Rf ⊂ M such that every point converges to a Lyapunov stable

chain recurrence class. Moreover, these chain recurrence classes are quasi-attractors.
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In [BC], also using the connecting lemma for pseudo-orbits they obtain the following very

important result. Let us recall that the homoclinic class of a hyperbolic periodic point is the

closure of the transversal intersections between the stable and unstable manifolds of the point.

Theorem 2.2 ([BC]). There exists a residual subsetRC ⊂ Diff1(M) such that if a chain recurrence

class contains a periodic point p, then it coincides with its homoclinic class. In particular, two

homoclinic classes coincide or are disjoint (this consequence is also from [CMP])

We shall study Lyapunov stable chain recurrence classes and we want to prove that far away

from sinks they are homoclinic classes and in fact, hyperbolic attractors. To do that, we shall

study the invariant measures supported in the quasi-attractor.

To obtain the hyperbolic splitting we shall use the notion of dominated splitting. We say that

a compact invariant set Λ admits a dominated splitting if there is a decomposition TΛM = E ⊕F
on Df−invariant non-trivial subspaces such that for every v ∈ E and w ∈ F we have that there

exists n > 0 such that

‖Dfnv‖
‖v‖

≤ 1

2

‖Dfnw‖
‖w‖

We say that Λ is hyperbolic if it admits a dominated splitting and there exists n0 > 0 such that

for every v ∈ E and w ∈ F we have that ‖Dfn0v‖ < 1
2
‖v‖ and ‖Df−n0w‖ < 1

2
‖w‖. A hyperbolic

attractor is an attractor which is hyperbolic (notice that a sink is an hyperbolic attractor).

We have the following Theorem of [ABCD] which deduces a generic property from the results

of [PS] and shows that to find hyperbolicity it suffices to obtain a dominated splitting

Theorem 2.3 ([PS], [ABCD] Theorem 2). There exist a residual subset RH ⊂ Diff1(M2) where

M2 is a surface such that if f ∈ RH and Λ is a chain recurrence class admitting a dominated

splitting, then, Λ is hyperbolic.

To obtain the dominated splitting in the class we shall use the following results, the first one is

new, but the others are quite classical

Theorem 2.4 ([ABC] and [C], Proposition 1.4). Let µ be an ergodic hyperbolic measure (that

is, all the Lyapunov exponents different from zero) such that the Oseledet’s splitting admits a

dominated splitting. Then, the support of µ is contained in a homoclinic class.

The following proposition follows easily from arguments from [BDP]. We shall give a proof for

completeness. For a point x ∈M we denote its orbit by Ox and for a periodic point p we denote

its period by π(p).

Proposition 2.1. Let H be homoclinic class of a periodic point with |det(Dfπ(p)
p )| < 1, then there

is a dense subset of periodic points in H having the same property.

Proof. Let U be an open set in H. There is a periodic point q ∈ U homoclinically related to

p. Consider x ∈ W s(Op) ∩ W u(Oq) and y ∈ W s(Oq) ∩ W u(Op). The set Op ∪ Oq ∪ Ox ∪ Oy
is a hyperbolic set. So, using the shadowing lemma we can obtain a periodic point r ∈ U ,
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homoclinically related to p such that its orbit spends most of the time near Op. Thus, it will

satisfy that |det(Dfπ(r)
r )| < 1.

�

We shall also use Franks’ lemma and Mañe’s ergodic closing lemma (see [F] and [M]). The first

one asserts that one can change by a small C1-perturbation the derivative of a periodic point,

and the latter implies that given an ergodic measure for f , there exists diffeomorphisms gn → f

and periodic orbits On such that On converge in the Hausdorff topology to the support of µ, in

particular, if
∫
log|det(Df)|dµ = a then for these periodic orbits the logarithm of the determinant

will be arbitrarily close to a.

3. Proof of the Theorem 1.1

Let K be the set of all compact subsets of M with the Hausdorff topology.

Let Γ : Diff1(M2)→ K be the map such that Γ(f) = S(f) where S(f) is the clousure of the set

of sinks of f .

Since Γ is lower semicontinuous, there exists a residual subset R0 of Diff1(M) such that for

every f ∈ R0, f is a continuity point of Γ. This implies that we can write R0 = F ∪ I open sets

in R0 such that for every f ∈ F the number of sinks is locally constant and finite (that is, there

is a neighborhood U of f in Diff1(M) such that for every g ∈ U the number of sinks is the same

and they vary continuously), and such that for every f ∈ I there are infinitely many sinks.

To prove the Theorem it is enough to work inside F̃ (an open set in Diff1(M) such that

F = F̃ ∩ R0) since the Theorem is satisfied in I.

Let R = R0 ∩RQ ∩RC ∩RH . Let f ∈ F̃ ∩R. We must show that f is essentially hyperbolic.

We shall prove that every Lyapunov stable chain recurrence class is an hyperbolic attractor.

Since f ∈ RQ we have that if Λ is a non trivial (not a sink) Lyapunov stable chain recurrence

class then Λ is a quasi attractor, thus, it admits open neighborhoods Un such that Λ =
⋂
n≥0 Un,

Un+1 ⊂ Un and such that f(Un) ⊂ Un.

Lemma 3.1. Let Λ be a chain recurrent quasi-attractor. Then, there exist an ergodic measure µ

supported in Λ such that
∫
log(|det(Df)|)dµ ≤ 0.

Proof. Let mn be the normalized Lebesgue measure in Un. Consider µn a limit point in the

weak-∗ topology of the sequence of measures given by νk = 1
k

∑k
i=1 f

i
∗(mn) which is an invariant

measure supported in f(Un). Recall that f∗(ν)(A) = ν(f−1(A)).

Since f(Un) ⊂ Un we have that
∫

log(| detDf |)dmn < 0, and since this can be iterated, we have

that fk(Un) ⊂ fk−1(Un) thus
∫

log(| detDf |)dfk∗ (mn) < 0. This implies that
∫

log(| detDf |)dνk ≤
0. So, we get that

∫
log(| detDf |)dµn ≤ 0.

Now, consider a measure µ which is a limit point in the weak-∗ topology of the measures µn.

This must be an invariant measure, supported on Λ satisfying that
∫

log(| detDf |)dµ ≤ 0. Using

the ergodic decompostion theorem (see [M2]) one can assume that µ is ergodic.
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�

Since the set of sinks varies continuously with f and there are finitely many of them, we can

choose n such that there are no sinks in Un. Using the ergodic closing lemma [M] we get that

the support of the measure must admit a dominated splitting. Otherwise we get periodic points

converging to the support of the measure and with log(| detDfπ(p)|) close to zero. If they don’t

admit a dominated splitting, using a classical argument (see Lemma 7.7 of [BDV]) one can convert

them into sinks by applying Franks’ lemma, [F], a contradiction.

So, the support of the measure µ admits a dominated splitting. Also, the measure must be

hyperbolic since if no positive exponents exist one can create a sink with the ergodic closing lemma

and since
∫

log(| detDf |)dµ ≤ 0 then one negative exponent must also exist. Using Theorem 2.4,

we deduce that the support of µ is contained in a homoclinic class, in particular, Λ is a homoclinic

class. Also we get periodic points inside the class such that log(| detDfπ(p)|) < ε for any ε > 0.

Using Proposition 2.1 we get that periodic points with this property are dense in the homoclinic

class and so we get a dominated splitting TΛM = E ⊕ F in the whole class. In fact, since we are

far from sinks, we get that F must be uniformly expanding.

Since we are in RH we get that Λ is hyperbolic, and thus, using classical arguments from

hyperbolic theory, we get that Λ is a hyperbolic attractor.

This proves the first assertion of the Theorem.

Now, suppose there are infinitely many hyperbolic attractors. Assume Λn → K in the Hausdorff

topology, clearly K ∩ S(f) = ∅.
Notice that there are measures µn supported in Λn such that

∫
log(|det(Df)|)dµn ≤ 0. Con-

sider a weak-∗ limit µ of these measures, so we have that µ is supported in K and verifies that∫
log(|det(Df)|)dµn ≤ 0. So using the same argument as before we deduce that K is contained

in a hyperbolic homoclinic class, and thus isolated, a contradiction.

Since f ∈ RC , generic points in the manifold converge to Lyapunov stable chain recurrence

classes and we get that there is an open and dense subset of M in the basin of hyperbolic attractors.

This finishes the proof of the Theorem.

�

4. Proof of the Theorem 1.2

We shall use the following Theorem from [Pot]:

Theorem 4.1. Let Λ be a Lyapunov stable homoclinic class of a generic diffeomorphism f . So, if Λ

doesn’t admit any dominated splitting then every periodic point p in Λ satisfies that det(Dpf
π(p)) >

1.

If Λ doesn’t admit any dominated splitting, then the previous theorem toghether with Frank’s

Lemma allow us to create new sources. The genericity hypothesis implies that Λ must admit

dominated splitting.

Theorem 2.3 concludes.
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