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Main Purpose: determine whether we can model the returns of a
certain financial time series

X(0), X(1), . . . , X(n)

through a linear time series model.

We begin with the Auto Regresive models (AR), continue with
Moving Average Models (MA), discuss the (ARMA) model, in
the stationary case, and finally consider the integrated ARMA or
the ARIMA model in the case of non-stationarity.

The idea is to review the main procedures in the simplest cases.
In practice, the statistical work is done with the help of statistical
software.
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7a. Fitting AR(1) time series

An Auto Regresive time series of order p = 1, or AR(1), is a
stochastic process that satisfies the equation

X(t) − φX(t − 1) = ε(t), t = 1, 2, . . .

where

• |φ| < 1

• {ε(t)} is a strict white noise with variance σ2
ε.

The correlogram of an AR(1) process is{
ρ(0) = 1

ρ(h) = φ|h| when h 6= 0

Observe that the behaviour of the correlation strongly differs ac-
cording to whether −1 < φ < 0 or 0 < φ < 1.

The case φ = 0 corresponds to the strict white noise process.
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In order to determine whether it is plausible to model a given time
series with an AR(1), the first thing to do is visual analysis to see
if the empirical correlogram of the data resambles the theoretical
model.

After this, the estimators of the parameter φ and the variance σ2
ε

are simply computed by the formulas

φ̄ =

∑n
k=1 X(t)X(t − 1)∑n

k=1 X(t)2

σ̄ε
2 = σ̄2(1 − φ̄2)

where σ̄2 = cov(0) is the estimator of the variance sample.
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To fit an AR(1) model one sholud perform the following main
steps.

STEP 1. Plot the correlogram and compare with the correspond-
ing theoretical autocorrelation function.

STEP 2. Estimate the parameters φ and σ2
ε

STEP 3. Compute the residuals

ε̄(1) = X(1) − φ̄X(0), . . . , ε̄(n) = X(n) − φ̄X(n − 1)

STEP 4. Test whether the residuals conform a strict white noise
sequence with visual analysis and/or the Portmanteau test.
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To construct confidence intervals for our estimated correlations we
apply the KEY Theorem. Under the hypothesis of an AR(1) the
series in Bartlett’s formula can be summed to give the variance of

Wii =
(1 − φ2i)(1 + φ2)

1 − φ2
− 2iφ2i

∼ 1 + φ2

1 − φ2
for big values of i

In particular

W11 = 1, W22 = (1 + φ2)2 − 4φ4, . . .

make possible to construct individual confidence intervals for ρ̄(1)
and ρ̄(2) and so on, based on the estimated value of φ.

Caution: One must be aware that, due to presence of correlation
in the estimations of the correlations, this test is only to reject the
AR(1) hyphotesis.

6



The following situations should be taken into account:

• If the estimation φ̄ ∼ 0, and and the different previous steps give
affirmative answer, one should check directly for the possibility
of the original series to be a white noise.

• If the absolute value of our estimated parameter |φ̄| ∼ 1, then
it is possible that we are trying to fit the wrong model, as this
latter fact suggests that the initial data follow a random walk.
A further differentiation of the returns should be tried:

Y (1) = X(1) − X(0), . . . , Y (n) = X(1) − X(0).

If you fit an ARMA(p,q) model to {Y (t)} then it is said that
the original data {X(t)} follows an Integrated ARMA(p,q), or
an ARIMA(p,q) model.

• If your estimation of |φ̄| is significatively greater than 1, then
the model definitively does not fit the data.
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7b. Fitting MA(1) time series

A Moving Average time series of order q = 1, or MA(1), is a
stochastic process that satisfies the equation

X(t) = ε(t) − θε(t − 1), t = 1, 2, . . .

where

• θ is a real valued constant,

• {ε(t)} is a strict white noise with variance σ2
ε.

The value θ = 0 gives a white noise model, furthermore, there is
no restriction in the value of θ in order to have a stationary process
(but |θ| < 1 is necessary for the process to be invertible).
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The autocorrelation of an MA(1) process is

ρ(h) =


1 when h = 0,
−θ

1+θ2 when h = 1,

0 when h ≥ 2.

giving a simple way to find out whether it is feasible to fit a MA(1)
model to the data.

Confidence intervals for ρ̄(h) can be constructed for h ≥ 2. Inter-
vals are centered and estimated variances, according to Bartlett’s
formula, are:

W̄hh = 1 + 2ρ̄(1)2,

confidence intervals (with 95% probability) have the form

(−1.96
√

W̄hh/n, 1.96
√

W̄hh/n).
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The estimated parameter θ̄ solve the equation

ρ̄(1)θ̄2 + θ̄ + ρ̄(1) = 0

that has two solutions, and we take the one with |θ̄| < 1 for the
process to be invertible. The estimation of the variance of the
white noise is

σ̄ε
2 = ρ̄(0)/

(
1 + θ̄2).

The steps in order to fit a MA(1) model are similar, with a main
difference:

• In AR models one first estimates the parameters, and then con-
struct the confidence intervals for the estimated correlogram,

• In MA models, one begins by visual and statistical analysis of
the correlograms, as the construction of the confidence inter-
vals for estimated correlations with h > 1 does not require the
knowledge of the parameters.
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7c. Comments on AR(p) models

The equation of an AR(p) process is

X(t) − φ1X(t − 1) − · · · − φpX(t − p) = ε(t),

where {ε(t)} is a strict white noise, with variance σ2
ε, and the

complex valued polynomial

φ(z) = 1 − φ1z − φ2z
2 − · · · − φpz

p

should have its p roots outside the unit circle. Observe that for
p = 1 the polynomial reduces to

φ(z) = 1 − φz

the root is 1/φ that should have absolute value bigger that one,
i.e. |φ| < 1.

The autocorrelation function is a linear combination of damped
exponential and damped sines, so there is no a priori visual analysis
to perform.
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On the other side, the estimation of the parametrs is simple, as
parameters can be estimated as solution of the Yule-Walker equa-
tions

ρ(1) = φ1 +φ2ρ(1) + . . . +φpρ(p − 1)
ρ(2) = φ1ρ(1) +φ2 + . . . +φpρ(p − 2)

... = ... + ... + . . . + ...
ρ(p) = φ1ρ(p − 1) + . . . + . . . + φp

that is proved to have solutions, with estimated ρ̄(i) in place of
ρ(i). The variance of the white noise, can be estimated by the
equation

σ̄ε
2 = σ̄2(1 − φ̄1

¯ρ(1) − · · · − φ̄p
¯ρ(p)

)
.
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7d. Comments on MA(q) models

The equations of an MA(q) process is

X(t) = ε(t) − θ1ε(t − 1) − · · · − θqε(t − p),

where {ε(t)} is a strict white noise, with variance σ2
ε.

The process is stationary for all values of the parameters θ1, . . . , θq,
but the complex valued polynomial

θ(z) = 1 − θ1z − θ2z
2 − · · · − θpz

p

should have its q roots outside the unit circle in order to be in-
vertible.

The autocorrelation function is simple, as it vanishes for values
larger than q, more precisely

ρ(h) =


−θh+θ1θh+1+···+θq−hθq

1+θ2
1+···+θ2

q
when h = 1, . . . , q

0 when h > q
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This give both the possibility of visual fitting, and furthermore,
provides equal confidence intervals (with 95% probability) for ρ̄(h)
with h > q of the form:

(−1.96
√

W̄hh/n,−1.96
√

W̄hh/n).

where Bartlett’s formula gives the estimated variances

W̄hh = 1 + 2
(
ρ̄(1)2 + · · · + ρ̄(q)

)
On the other side, the estimation of the parametrs is not direct,
and done through algorithmic methods.
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7e. Final Comments on ARMA(p,q) models

An ARMA(p,q) process satisfies the equation

X(t) − φ1X(t − 1) − · · · − φpX(t − p)

= ε(t) − θ1ε(t − 1) − · · · − θqε(t − p),

where {ε(t)} is strict with noise and the parameters satisfy simul-
taneously the conditions for AR(p) and MA(q) models.

The combination of AR and MA produces an autocorrelation func-
tion that has no simple form, and algorithmic estimation proce-
dures for the parameters, implemented in statistical software.

One final remark:

All procedures explained assumed that p and q are known. In
fact, to find the best order for fitting an ARMA model, one can
use the Akaike criteria, that consists in choosing the model that
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minimizes the statistic

AIC(p, q) = log σ̄ε
2 + 2(p + q)/T.

Statistical software performs this order selection in a systematic
way.

7f. Nonstationarity and ARIMA models

In the following situations, one should try to differentiate the data,
constructing

Y (1) = X(1) − X(0), . . . , Y (n) = X(1) − X(0).

•When visually some non-stationarity is detected in the time
series of the returns.

•When roots with modulus near one are find in the corresponding
polynomials of the ARMA process. (For instance, when |φ| ∼ 1
in an AR(1) process.)

•When in the correlogram the first estimated correlations do not
decay rapidly. This phenomena is found in the autocorrelation
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of a random process.

If it is possible to fit the differentiated process {Y (t)} with and
ARMA(p,q) model, we say that the process {X(t)} follows and
ARIMA process. In some exceptional cases, it may be necessary
to differentiate twice, i.e. to differentiate the process {Y (t)}.
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