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SUMMARY

The market implied volatilities of stock index options often have a
skewed structure, commonly called “the volatility smile.” One of the
long-standing problems in options pricing has been how to reconcile
this structure with the Black-Scholes model usually used by options
traders. In this paper we show how to extend the Black-Scholes
model so as to make it consistent with the smile.

The Smile: Implied Volatilities of S&P 500 Options on Jan 31, 1994.

The Black-Scholes model assumes that the index level executes a
random walk with a constant volatility. If the Black-Scholes model is
correct, then the index distribution at any options expiration is log-
normal, and all options on the index must have the same implied vol-
atility. But, ever since the ‘87 crash, the market’s implied Black-
Scholes volatilities for index options have shown a negative relation-
ship between implied volatilities and strike prices – out-of-the-money
puts trade at higher implied volatilities than out-of-the-money calls.
The graph above illustrates this behavior  for 47-day European-style
March options on the S&P 500, as of January 31, 1994. The data for
strikes above (below) spot comes from call (put) prices.

By empirically varying the Black-Scholes volatility with strike level,
traders are implicitly attributing a unique non-lognormal distribu-
tion to the index. You can think of this non-lognormal distribution as
a consequence of the index level executing a modified random walk –
modified in the sense that the index has a variable volatility that
depends on both stock price and time. To value European-style
options consistently by calculating the expected values of their pay-
offs, you then need to know the exact form of the non-lognormal dis-
tribution. To value American-style or more exotic options, you must
know the exact nature of the modified random walk – that is, how the
volatility varies with stock price and time.
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This implied tree contains all the information you can extract from
the smile about the nature of the random walk attributed to index
levels. You can use this implied tree to consistently value and

In this paper we show how you can use the smile – the prices of
known, liquid, European-style index options of all available strikes
and expirations – as inputs to deduce the form of the index’s random
walk. More specifically, we show how you can systematically extract,
from the smile, a unique binomial tree for the index corresponding to
the modified random walk mentioned above. We call this the implied
tree. When you use this tree to value any of the options on which it is
based, it produces values that match the observed market prices.

From this tree you can calculate both the distribution and the volatil-
ity of the index at future times and market levels, as implied by
options prices. The chart below illustrates some of the information
that follows from the implied tree.

You can use this implied tree to value other derivatives whose prices
are not readily available from the market – standard but illiquid
European-style options, American-style options and exotic options
that depend on the details of the index distribution – secure in the
knowledge that the model is valuing all your hedging instruments
consistently with the market.

Implied Local Volatility
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In this paper we propose an extension of the Black-Scholes (BS)
options model in order to accommodate the structure of market
implied volatilities for index options.

There are two important but independent features of the Black-
Scholes theory. The primary feature of the theory is that it is prefer-
ence-free – the ­values of contingent claims do not depend upon inves-
tors’ risk preferences. Therefore, you can value an option as though
the underlying stock’s expected return is riskless. This risk-neutral
valuation is allowed because you can hedge an option with stock to
create an instantaneously riskless portfolio.

A secondary feature of the BS theory is its assumption that stock
prices evolve lognormally with a constant local volatility σ at any
time and market level. This stock price evolution over an infinitesi-
mal time dt is described by the stochastic differential equation

(EQ 1)

where S is the stock price, µ is its expected return and dZ is a Wiener
process with a mean of zero and a variance equal to dt.

The Black-Scholes formula  for a call with strike K

and time to expiration t, when the riskless rate is r, follows from
applying the general method of risk-neutral valuation to a stock
whose evolution is specifically assumed to follow Equation 1.

In the Cox-Ross-Rubinstein (CRR) binomial implementation of the
process in Equation 1, the stock evolves along a risk-neutral binomial
tree with constant logarithmic stock price spacing, corresponding to
constant volatility, as illustrated schematically in Figure 1.

FIGURE 1. Schematic Risk-Neutral Stock Tree with Constant Volatility

THE BLACK-SCHOLES
THEORY AND ITS
DISCONTENTS

dS
S

-------- µdt σdZ+=

CBS S σ r t K, , , ,( )
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time
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The binomial tree corresponding to the risk-neutral stock evolution is
the same for all options on that stock, irrespective of their strike level
or time to expiration. The stock tree cannot “know” about which
option we are valuing on it.

Market options prices are not exactly consistent with theoretical
prices derived from the BS formula. Nevertheless, the success of the
BS framework has led traders to quote a call option’s market price in
terms of whatever constant local volatility σimp makes the BS for-
mula value equal to the market price. We call σimp the Black-Scholes-
equivalent or implied volatility, to distinguish it from the theoreti-
cally constant local volatility σ assumed by the BS theory. In essence,
σimp is a means of quoting prices.

How consistent are market option prices with the BS formula? Figure
2(a) shows the decrease of σimp with the strike level of options on the
S&P 500 index with a fixed expiration of 44 days, as observed on May
5, 1993. This asymmetry is commonly called the volatility “skew.”
Figure 2(b) shows the increase of σimp with the time to expiration of
at-the-money options. This variation is generally called the volatility
“term structure.” In this paper we will refer to them collectively as
the volatility “smile.”

FIGURE 2. Implied Volatilities of S&P 500 Options on May 5, 1993

In Figure 2(a) the data for strikes above (below) spot comes from call
(put) prices. In Figure 2(b) the average of at-the-money call and put
implied volatilities are used. You can see that σimp falls as the strike
level increases. Out-of-the-money puts trade at higher implied vola-
tilities than out-of-the-money calls. Though the exact shape and mag-
nitude vary from day-to-day, the asymmetry persists and belies the
BS theory, which assumes constant local (and therefore, constant

The Smile
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implied) volatility for all options. Its persistence suggests a discrep-
ancy between theory and the market. It may be convenient to keep
quoting options prices in terms of Black-Scholes-equivalent volatili-
ties, but it is probably incorrect to calculate options prices using the
BS formula.

There have been various attempts to extend the BS theory to account
for the volatility smile. One approach incorporates a stochastic vola-
tility factor1; another allows for discontinuous jumps in the stock
price2. These extensions cause several practical difficulties. First,
since there are no securities with which to directly hedge the volatil-
ity or the jump risk, options valuation is in general no longer prefer-
ence-free. Second, in these multifactor models, options values depend
upon several additional parameters whose values must be estimated.
This often makes confident option pricing difficult.

1.  See, for instance, J. Hull and A. White, Journal of Finance 42, 281-300, 1987.
2.  See R. Merton, Journal of Financial Economics 3, 125-144, 1976.
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We want to develop an arbitrage-free model that fits the smile, is
preference-free, avoids additional factors and can be used to value
options from easily observable data.

The most natural and minimal way to extend the BS model is to
replace Equation 1 above by

(EQ 2)

where σ(S,t) is the local volatility function that is dependent on both
stock price and time.

Other models of this type often involve a special parametric form for
σ(S,t). In contrast, our approach is to deduce σ(S,t) numerically from
the smile3. We can completely determine the unknown function σ(S,t)
by requiring that options prices calculated from this model fit the
smile.

In the binomial framework in which we work, the regular binomial
tree of Figure 1 will be replaced by a distorted or implied tree, drawn
schematically in Figure 3. Options prices for all strikes and expira-
tions, obtained by interpolation from known options prices, will
determine the position and the probability of reaching each node in
the implied tree.

FIGURE 3. The Implied Tree

3.  We have become aware of two recent papers with similar aims. See Mark
Rubinstein, Implied Binomial Trees, talk presented to the American Finance
Association, January 1993, and Bruno Dupire, Pricing With A Smile, RISK, January
1994, pages 18-20.

THE IMPLIED TREE
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We use induction to build an implied tree with uniformly spaced lev-
els, ∆t apart. Assume you have already constructed the first n levels
that match the implied volatilities of all options with all strikes out
to that time period. Figure 4 shows the nth level of the tree at time tn,
with n implied tree nodes and their already known stock prices si.

We call the continuously compounded forward riskless interest rate
at the nth level r. In general this rate is time-dependent and can vary
from level to level; for notational simplicity we avoid attaching an
explicit level index to this and other variables used here. We want to
determine the nodes of the (n+1)th level at time tn+1. There are n+1
nodes to fix, with n+1 corresponding unknown stock prices Si. Figure

4 shows the ith node at level n, denoted by (n,i) in boldface. It has a
known stock price si and evolves into an “up” node with price Si+1 and
a “down” node with price Si at level n+1, where the forward price cor-

responding to si is . We call pi the probability of making a

transition into the up node. We call λi the Arrow-Debreu price at node
(n,i); it is computed by forward induction as the sum over all paths,
from the root of the tree to node (n,i), of the product of the risklessly-
discounted transition probabilities at each node in each path leading
to node (n,i). All λi at level n are known because earlier tree nodes
and their transition probabilities have already been implied out to
level n.

There are 2n+1 parameters that define the transition from the nth to
the (n+1)th level of the tree, namely the n+1 stock prices Si and the n
transition probabilities pi. We show how to determine them using the
smile.

We imply the nodes at the (n+1)th level by using the tree to calculate
the theoretical values of 2n known quantities – the values of n for-
wards and n options, all expiring at time tn+1 – and requiring that
these theoretical values match the interpolated market values. This
provides 2n equations for these 2n+1 parameters. We use the one
remaining degree of freedom to make the center of our tree coincide
with the center of the standard CRR tree that has constant local vol-
atility. If the number of nodes at a given level is odd, choose the cen-
tral node’s stock price to be equal to spot today; if the number is even,
make the average of the natural logarithms of the two central nodes’
stock prices equal to the logarithm of today’s spot price. We now
derive the 2n equations for the theoretical values of the forwards and
the options.

CONSTRUCTING THE
TREE

Notation

Fi er∆tsi=

Implying the Nodes
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The implied tree is risk-neutral. Consequently, the expected value,
one period later, of the stock at any node (n,i) must be its known for-
ward price. This leads to the equation

(EQ 3)

where Fi is known. There are n of these forward equations, one for
each i.

The second set of equations expresses the values of the n indepen-
dent options4, one for each strike si equal to the known stock prices at
the nth level, that expire at the (n+1)th level. The strike level si splits

4.  There are only n independent options because puts and calls with the same strike
are related through put-call parity, which holds in our model because the implied
tree is constrained to value all forwards correctly.
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NOTATION

r: known forward riskless
interest rate at this level

si: known stock price at
node (n,i) at level n; node i;
also the strike for options
expiring at level n+1

Fi: known forward price
at level n+1 of the
known price si at level n

Si: unknown stock price
at node (n+1,i)

λι: known Arrow-Debreu

price at node (n,i)

pi: unknown risk-neutral
transition probability
from node (n,i) to
node (n+1,i+1)

FIGURE 4. Constructing the (n+1)th Level of the Implied Tree

Fi piSi 1+ 1 pi–( )Si+=
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the up and down nodes, Si+1 and Si, at the next level, as shown in
Figure 4. This ensures that only the up (down) node and all nodes
above (below) it contribute to a call (put) struck at si. These n equa-
tions for options, derived below, together with Equation 3 and our
choice in centering the tree, will determine both the transition proba-
bilities pi that lead to the (n+1)th level and the stock prices Si at the
nodes at that level.

Let C(si,tn+1) and P(si,tn+1), respectively, be the known market values
for a call and put struck today at si and expiring at tn+1. We know the
values of each of these calls and puts from interpolating the smile
curve at time tn+1. The theoretical binomial value of a call struck at K

and expiring at tn+1 is given by the sum over all nodes j at the (n+1)th

level of the discounted probability of reaching each node (n+1, j) mul-
tiplied by the call payoff there, or

(EQ 4)

When the strike K equals si, the contribution from the transition to
the first in-the-money up node can be separated from the other con-
tributions, which, using Equation 3, can be rewritten in terms of the
known Arrow-Debreu prices, the known stock prices si and the known

forwards  , so that

(EQ 5)

The first term depends upon the unknown pi and the up node with
unknown price Si+1. The second term is a sum of already known
quantities.

Since we know both Fi and C(si,tn+1) from the smile, we can simulta-
neously solve Equation 3 and Equation 5 for Si+1 and the transition
probability pi in terms of Si:

(EQ 6)

C K tn 1+,( ) e r∆t– λ j p j λ j 1+ 1 p j 1+–( )+{ }max S j 1+ K 0,–( )
j 1=

n

∑=

Fi er∆tsi=

er∆tC si tn 1+,( ) λi pi Si 1+ si–( ) λ j F j si–( )
j i 1+=

n

∑+=

Si 1+

Si er∆tC si tn 1+,( ) Σ–[ ] λisi Fi Si–( )–

er∆tC si tn 1+,( ) Σ–[ ] λi Fi Si–( )–
-------------------------------------------------------------------------------------------------=
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(EQ 7)

where Σ denotes the summation term in Equation 5.

We can use these equations to find iteratively the Si+1 and pi for all
nodes above the center of the tree if we know Si at one initial node. If

the number of nodes at the (n+1)th level is odd (that is, n is even), we
can identify the initial Si, for i = n/2 + 1, with the central node whose
stock price we choose to be today’s spot value, as in the CRR tree.
Then we can calculate the stock price Si+1 at the node above from
Equation 6, and then use Equation 7 to find the pi. We can now
repeat this process moving up one node at a time until we reach the
highest node at this level. In this way we imply the upper half of each
level.

If the number of nodes at the (n+1)th level is even (that is, n is odd),
we start instead by identifying the initial Si and Si+1, for i = (n+1)/2,
with the nodes just below and above the center of the level. The loga-
rithmic CRR centering condition we chose is equivalent to choosing
these two central stock prices to satisfy , where S = si is

today’s spot price corresponding to the CRR-style central node at the
previous level. Substituting this relation into Equation 6 gives the
formula for the upper of the two central nodes for even levels:

(EQ 8)

Once we have this initial node’s stock price, we can continue to fix
higher nodes as shown above.

In a similar way we can fix all the nodes below the central node at
this level by using known put prices. The analogous formula that
determines a lower node’s stock price from a known upper one is

(EQ 9)

pi
Fi Si–

Si 1+ Si–
-----------------------=

Si S2 Si 1+⁄=

Si 1+

S er∆tC S tn 1+,( ) λiS Σ–+[ ]
λiFi er∆t– C S tn 1+,( ) Σ+

------------------------------------------------------------------------ for i n 2⁄= =

Si
Si 1+ er∆tP si tn 1+,( ) Σ–[ ] λisi Fi Si 1+–( )+

er∆tP si tn 1+,( ) Σ–[ ] λi Fi Si 1+–( )+
--------------------------------------------------------------------------------------------------------------=
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where here Σ denotes the sum  over all nodes below the

one with price si at which the put is struck. If you know the value of
the stock price at the central node, you can use Equation 9 and Equa-
tion 7 to find, node by node, the values of the stock prices and transi-
tion probabilities at all the lower nodes.

By repeating this process at each level, we can use the smile to find
the transition probabilities and node values for the entire tree. If we
do this for small enough time steps between successive levels of the
tree, using interpolated call and put values from the smile curve, we
obtain a good discrete approximation to the implied risk-neutral
stock evolution process.

The transition probabilities pi at any node in the implied tree must
lie between 0 and 1. If pi > 1, the stock price Si+1 at the up-node at
the next level will fall below the forward price Fi in Figure 4. Simi-
larly, if` pi < 0, the stock price Si at the down-node at the next level
will fall above the forward price Fi. Either of these conditions allows
riskless arbitrage. Therefore, as we move through the tree node by
node, we demand that each newly determined node’s stock price must
lie between the neighboring forwards from the previous level, that is

.

If the stock price at a node violates the above inequality, we override
the option price that produced it. Instead we choose a stock price that
keeps the logarithmic spacing between this node and its adjacent
node the same as that between corresponding nodes at the previous
level. This procedure removes arbitrage violations (in this one-factor
model) from input option prices, while keeping the implied local vola-
tility function smooth.

λ j si F j–( )
j 1=

i 1–

∑

Avoiding Arbitrages

Fi Si 1+ Fi 1+< <



10

QUANTITATIVE STRATEGIES RESEARCH NOTESSachs
Goldman

We now illustrate the construction of a complete tree from the smile.
To keep life simple, we build the tree for levels spaced one year apart.
You can do it for more closely spaced levels on a computer.

We assume that the current value of the index is 100, its dividend
yield is zero, and that the annually compounded riskless interest rate
is 3% per year for all maturities. We assume that the annual implied
volatility of an at-the-money European call is 10% for all expirations,
and that implied volatility increases (decreases) linearly by 0.5 per-
centage points with every 10 point drop (rise) in the strike. This
defines the smile.

Figure 5 shows the standard (not implied) CRR binomial stock tree
for a local volatility of 10% everywhere. This tree produces no smile
and is the discrete binomial analog of the continuous-time BS equa-
tion. We use it to convert implied volatilities into quoted options
prices. Its up and down moves are generated by factors

. The transition probability at every node is 0.625.

FIGURE 5. Binomial Stock Tree with Constant 10% Stock Volatility

Figure 6 displays the implied stock tree, the tree of transition proba-
bilities and the tree of Arrow-Debreu prices that fits the smile. We
illustrate how a few representative node parameters are fixed in our
model.

HOW IT WORKS:
A DETAILED EXAMPLE

exp σ± 100⁄( )
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FIGURE 6. The Implied Tree, Probability Tree and Arrow-Debreu Tree
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First, the assumed 3% interest rate means that the forward price one
year later for any node is 1.03 times that node’s stock price.

Today’s stock price at the first node on the implied tree is 100, and
the corresponding initial Arrow-Debreu price λ0 = 1.000. Now let’s
find the node A stock price in level 2 of Figure 6. Using Equation 8 for

even levels, we set Si+1 = SA, S = 100,  and λ1 = 1.000. Then

where C(100,1) is the value today of a one-year call with strike 100. Σ
must be set to zero because there are no higher nodes than the one
with strike above 100 at level 0. According to the smile, we must
value the call C(100,1) at an implied volatility of 10%. In the simpli-
fied binomial world we use here,  when valued on the
tree of Figure 5. Inserting these values into the above equation yields
SA = 110.52. The price corresponding to the lower node B in Figure 6

is given by our chosen centering condition . From
Equation 7, the transition probability at the node in year 0 is

Using forward induction, the Arrow-Debreu price at node A is given
by , as shown on the
bottom tree in Figure 6. In this way the smile has implied the second
level of the tree.

Now let’s look at the nodes in year 2. We choose the central node to lie
at 100. The next highest node C is determined by the one-year for-
ward value FA = 113.84 of the stock price SA = 110.52 at node A, and
by the two-year call C(SA,2) struck at SA. Because there are no nodes
with higher stock values than that of node A in year 1, the Σ term is
again zero and Equation 8 gives

er∆t 1.03=

SA
100 1.03 C 100 1,( )× 1.000 100× Σ–+[ ]

1.000 103 1.03– C 100 1,( )× × Σ+
----------------------------------------------------------------------------------------------------=

C 100 1,( ) 6.38=

SB S2 SA⁄ 90.48= =

p 103 90.48–( )
110.52 90.48–( )

---------------------------------------- 0.625= =

λA λ0 p( ) 1.03⁄ 1.00 0.625×( ) 1.03⁄ 0.607= = =

SC
100 1.03 C SA 2,( )×[ ] 0.607 SA F A 100–( )× ×–

1.03 C SA 2,( )× 0.607 F A 100–( )×–
-------------------------------------------------------------------------------------------------------------------------=
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The value of C(SA,2) at the implied volatility of 9.47% corresponding
to a strike of 110.52 is 3.92 in our binomial world. Substituting these
values into the above equation yields SC = 120.27. Equation 7 for the
transition probability gives

We can similarly find the new Arrow-Debreu price λC. We can also
show that the stock price at node D must be 79.30 to make the put
price P(SB,2) have an implied volatility of 10.47% consistent with the
smile.

The implied local one-year volatility at node A in the tree is

Similarly, σΒ = 10.90%. You can see that fitting the smile causes local
volatility one year out to be greater at lower stock prices.

To leave nothing in doubt, we show how to find the value of one more
stock price, that at node G in year 5 of Figure 6. Let’s suppose we
have already implied the tree out to year 4, and also found the value
of SF at node F to be 110.61, as shown in Figure 6. The stock price SG
at node G is given by Equation 8 as

where SE = 120.51 and  and λE = 0.329.
The smile’s interpolated implied volatility at a strike of 120.51 is
8.86%, corresponding to a call value C(120.51,5) = 6.24. The value of
the Σ term in the above equation is given by the contribution to this
call from the node H above node E in year 4. From Equation 5 and
Figure 6 it is

Substituting these values gives SG = 130.15.

pA
113.84 100–( )
120.27 100–( )

------------------------------------ 0.682= =

σA pA 1 pA–( ) 120.27 100⁄( )log 8.60%= =

SG
SF 1.03 C SE 5,( ) Σ–×[ ] λE SE FE 110.61–( )× ×–

1.03 C SE 5,( ) Σ–×[ ] λE FE 110.61–( )×–
---------------------------------------------------------------------------------------------------------------------------------=

FE 120.51 1.03× 124.13==

Σ λH FH SE–( )=

0.181 1.03 139.78× 120.51–( )×=

4.247=
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SOME DISTRIBUTIONS

Once you have an implied tree that fits the
smile, you can look at distributions of future
stock prices in the risk-neutral world. If you
take the model seriously, these are the distri-
butions the market is attributing to the stock
through its quoted options prices.

The implied distributions in Figure 7 result
from fitting an implied five-year tree with 500
levels to the following smile: for all expira-
tions, at-the-money (strike=100) implied vola-
tility is 10%, and increases (decreases) by one
percentage point for every 10% drop (rise) in
the strike. We assume a continuously com-
pounded interest rate of 3% per year, and no
stock dividends.

Figure 7(a) shows the implied risk-neutral
stock price distribution at five years, as com-
puted from the implied tree. The mean stock
price is 116.18; the standard deviation is
21.80%.

Figure 7(b) shows the lognormal distribution
with the same mean and standard deviation.
You can see that the implied tree has a distri-
bution that is shifted towards low stock
prices.

Figure 7(c) shows the difference between the
two distributions.

Figure 7(d) shows the local volatility σ(S,t) in
the implied tree at all times and stock price
levels. To explain this smile the local volatil-
ity must decrease sharply with increasing
stock price and vary slightly with time.

In this example we have found the implied
tree and its distributions resulting from a
smile whose shape is independent of expira-
tion time. We can do the same for more com-
plex smiles, where volatility changes with
time to expiration.

Implied Local Volatility
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We have shown that you can use the volatility smile of liquid index
options, as observed at any instant in the market, to construct an
entire implied tree. This tree will correctly value all standard calls
and puts that define the smile. In the continuous time limit, the risk-
neutral stochastic evolution of the stock price in our model has been
completely determined by market prices for European-style standard
options.

You can use this tree to value other derivatives whose prices are not
readily available from the market – standard but illiquid European-
style options, American-style options and exotic options – secure in
the knowledge that the model is valuing all your hedging instru-
ments consistently with the market. We believe the model may be
especially useful for valuing barrier options, where the probability of
striking the barrier is sensitive to the shape of the smile. You can also
use the implied tree to create static hedge portfolios for exotic
options5, and to generate Monte Carlo distributions for valuing path-
dependent options.

Finally, it would be interesting to see to what extent the implied
tree’s local volatility function σ(S,t) forecasts index volatility at future
times and market levels.

5.  E. Derman, RISK Exotic Options Conference, London, December 1993.

CONCLUSION
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In this section we will investigate the continuous time theory associ-
ated with the stock price diffusion process

(A 1)

where  is the expected instantaneous stock price return, which is

assumed to be a deterministic function of time, and  is local
volatility function which is assumed to be a (path-independent) func-
tion of stock price and time. Here  denotes the standard Brown-

ian motion. Let  denote the transition probability function
associated with the diffusion Equation A1. It is defined as the proba-
bility that the stock price reaches the value  at time t given its
starting value  at time 0. It is well known that this function satis-
fies both the backward and forward Kolmogorov equations together
with the boundary condition , where  is
the Dirac delta function. The backward equation reads

(A 2)

while the forward equation is its formal adjoint

(A 3)

Let denote the discount function

(A 4)

Then the value of a standard European call option with spot price ,
strike price and time to expiration  is given by

(A 5)

Differentiating Equation A5 once with respect to strike price  leads
to the following relationship between a strike spread and the inte-
grated distribution function:

APPENDIX:
The Continuous-Time
Theory
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(A 6)

Differentiating Equation A5 twice with respect to strike price
leads to the following relationship between a butterfly spread and the
distribution function:

(A 7)

The left side of this equation is the familiar Arrow-Debreu price in
this theory. It is the price of a security whose payoff function is given
by . If, for a given stock level, the prices (and therefore, all
partial derivatives with respect to the strike) of call options of all
strikes and all maturities were to be available, Equation A7 would
entirely specify the distribution functions of this theory. However, the
stock distribution function  is not necessarily sufficient to determine
the diffusion process completely. Different diffusion processes can
have the same distribution functions. Remarkably, though, all the
parameters of the diffusion process in Equation A1 are uniquely
specified by the stock price distribution.

To show this, we will establish that the standard European call
option prices  in this theory satisfy the following “forward”
equation:

(A 8)

Our proof here is a variation of the original proof by Dupire3. Multi-
plying both sides of Equation A3 by  and integrating with
respect to  leads to:

(A 9)
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Integrating the first term on the left side of Equation A9 by parts,
and then substituting from Equation A6 leads to

(A 10)

Integrating the second term on the left side of Equation A9 by parts,
and then substituting from Equation A7 leads to

(A 11)

Finally, using Equation A5, the last term on the left side of Equation
A9 can be written in the form

(A 12)

Let us assume that  approaches zero sufficiently fast for
large values of  so that all the boundary terms above vanish. Then
Equations A10  through A12 can be combined to yield Equation A8.

Equation A5 shows that, in the theory defined by the diffusion of
Equation A1, the distribution function  completely deter-
mines call option prices  for all values of strike  and time
. Conversely, from Equation A7, call prices determine the distribu-

tion. Furthermore Equation A9 can be used in this theory to derive
local volatility function  from the known call option prices
(and their known derivatives). Combining these facts we can see that
the stock price diffusion process of Equation A1 is entirely deter-
mined from the knowledge of the stock price distribution function, as
we asserted earlier.
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In a more general theory, knowledge of the stock price distributions
do not necessarily allow the unique deduction of the diffusion pro-
cess. This is the case, for example, where the drift in the diffusion
process depends on the path the stock price takes as well as on time,
and therefore call option prices cannot be described in terms of a dis-
tribution function alone. If the drift function is an a priori known
(path-independent) function of spot price and time, we can show that
the knowledge of call option prices is in fact sufficient to derive the
underlying diffusion, as we will now demonstrate.

Consider a diffusion process whose drift is any known function
 of spot price and time, satisfying the following diffusion equa-

tion:

(A 13)

The Arrow-Debreu price  is the price of a security which
pays one dollar if the stock price  at time  attains value , and
zero otherwise. Λ(...) can be computed as the expected discounted
value of its payoff as follows:

(A 14)

where E(S,0)[...] is the expectation conditional on the initial stock
price being S at t = 0. The price of a standard European call option
with spot price , strike price  and time to expiration  is by defini-
tion given by:

(A 15)

Using Equation A14 we can rewrite this in terms of Arrow-Debreu
prices as

(A 16)
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Differentiating this equation once with respect to  leads to the fol-
lowing more general form of Equation A6:

(A 17)

and differentiating twice leads to the more general form of Equation
A7,

(A 18)

It is known that  satisfies the following forward Kolmog-
orov differential equation:

(A 19)

This equation is analogous to Equation A3 satisfied by the transition
probability function, and can be used in the same manner to derive a
forward equation for European call option prices similar to Equation
A8. So, multiplying both sides of Equation A19 by  and inte-
grating with respect to , and then assuming similar boundary con-
ditions at infinity, leads to the following equation:

(A 20)

For a given spot price , if the local drift function  and Euro-
pean call option prices corresponding to all strikes and expirations
are known, then we can use Equation A20 to find the local volatility

 for all values of  and . This completes the specification of
the diffusion process associated with Equation A13.
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