DIMENSIONS OF SIMPLE $u_{q}\left(\mathfrak{s l}_{3}\right)$-MODULES

MARIANA PEREIRA

This is a summary of the correspondence between the simple $u_{q}\left(\mathfrak{S l}_{3}\right)$-modules described by Dobrev in [1] and those described using a method introduced by Radford ([4]) that appeared in [3].

First we will describe how the quantum groups in [3] can be seen as the quantum groups used by Dobrev. The parameter used when referring to Dobrev's modules will be called q and the parameter used when referring to modules constructed using Radford's method will be denoted by θ.
In [1] $U_{q}\left(\mathfrak{s l}_{3}\right)$ is the associative algebra over \mathbb{C}, with generators $X_{i}^{ \pm}, H_{i}, i=1,2$ and relations
(R1) $\left[H_{i}, H_{j}\right]=0$
(R2) $\left[H_{i}, X_{j}^{ \pm}\right]= \pm a_{i j} X_{j}^{ \pm}$
(R3) $\left[X_{i}^{+}, X_{j}^{-}\right]=\delta_{i j} \frac{q^{H_{i} / 2}-q^{-H_{i} / 2}}{q^{1 / 2}-q^{-1 / 2}}=\delta_{i j}\left[H_{i}\right]_{q}$.
(R4) $\sum_{k=0}^{2}(-1)^{k}\binom{2}{k}_{q}\left(X_{i}^{ \pm}\right)^{k} X_{j}^{ \pm}\left(X_{i}^{ \pm}\right)^{2-k}=0, i \neq j$,
where $\left(a_{i j}\right)=\left(2\left(\alpha_{i}, \alpha_{j}\right) /\left(\alpha_{i}, \alpha_{i}\right)\right)$ is the Cartan matrix of $\mathfrak{s l}_{3}$. It follows from (R4) that $H_{i}^{m} X_{j}^{ \pm}=X_{j}\left(H_{i} \pm a_{i j}\right)^{n}$.

Lemma 1. Changing the generating elements to

$$
K_{i}^{ \pm 1}=q^{ \pm H_{i} / 2}, \quad E_{i}=X_{i}^{+} K_{i}^{-1 / 2}, \quad F_{i}=X_{i}^{-} K_{i}^{1 / 2}
$$

the relations are replaced by
(R1') $K_{i} K_{i}^{-1}=K_{i}^{-1} K_{i}=1, \quad K_{1} K_{2}=K_{2} K_{1}$
(R2') $K_{i} X_{j}^{ \pm} K_{i}=q^{ \pm a_{i j} / 2} X_{j}^{ \pm}$
(R3') $\left[E_{i}, F_{j}\right]=\delta_{i j} q^{1 / 2} \frac{K_{i}-K_{i}^{-1}}{q^{1 / 2}-q^{-1 / 2}}$.
(R4') $\sum_{k=0}^{2}(-1)^{k}\binom{2}{k}_{q} E_{i}^{k} E_{j} E_{i}^{2-k}=0=\sum_{k=0}^{2}(-1)^{k}\binom{2}{k}_{q} F_{i}^{k} F_{j} F_{i}^{2-k}, i \neq j$,
The coalgebra structure is given by

- $\Delta\left(K_{i}^{ \pm}\right)=K_{i}^{ \pm} \otimes K_{i}^{ \pm}$
- $\Delta\left(E_{i}\right)=E_{i} \otimes 1+K_{i}^{-1} \otimes E_{i}$
- $\Delta\left(F_{i}\right)=F_{i} \otimes K_{i}+1 \otimes F_{i}$

Date: July 20, 2009.

Proof. We will show (R3') (the other relations are shown in [1]). First note that, if $m \in \mathbb{R}, K_{i}^{m} X_{j}^{ \pm}=q^{ \pm a_{i j} m / 2} X_{j}^{ \pm} K_{i}^{m}:$ if $q=e^{\alpha}$ then

$$
\begin{aligned}
K_{i}^{m} X_{j}^{ \pm} & =q^{m H_{i} / 2} X_{j}^{ \pm}=e^{\alpha m H_{i} / 2} X_{j}^{ \pm}=\sum \frac{1}{n!}\left(\frac{\alpha m}{2}\right)^{n} H_{i}^{n} X_{j}^{ \pm} \\
& =\sum \frac{1}{n!}\left(\frac{\alpha m}{2}\right)^{n} X_{j}^{ \pm}\left(H_{i} \pm a_{i j}\right)^{n}=X_{j}^{ \pm} \sum \frac{1}{n!}\left(\frac{\alpha m\left(H_{i} \pm a_{i j}\right)}{2}\right)^{n} \\
& =X_{j}^{ \pm} e^{\frac{\alpha m\left(H_{i} \pm a_{i j}\right)}{2}}=X_{j}^{ \pm} q^{m H_{i} / 2 \pm a_{i j} m / 2}=q^{ \pm a_{i j} m / 2} X_{j}^{ \pm} K_{i}^{m} .
\end{aligned}
$$

In particular, if $m=1$ we have (R^{\prime}) and if $m=1 / 2$ we have that $K_{i}^{1 / 2} X_{j}^{ \pm}=$ $q^{ \pm a_{i j} / 4} X_{j}^{ \pm} K_{i}^{ \pm 1 / 2}$.

$$
\begin{aligned}
{\left[E_{i}, F_{j}\right] } & =X_{i}^{+} K_{i}^{-1 / 2} X_{j}^{-} K_{j}^{+1 / 2}-X_{j}^{-} K_{j}^{+1 / 2} X_{i}^{+} K_{i}^{-1 / 2} \\
& =q^{-\left(-a_{i j} / 4\right)} X_{i}^{+} X_{j}^{-} K_{i}^{-1 / 2} K_{j}^{1 / 2}-q^{a_{i j} / 4} X_{j}^{-} X_{i}^{+} K_{j}^{1 / 2} K_{i}^{-1 / 2} \\
& =q^{a_{i j} / 4}\left(X_{i}^{+} X_{j}^{-}-X_{j}^{-} X_{i}^{+}\right) K_{j}^{1 / 2} K_{i}^{-1 / 2} \\
& =q^{a_{i j} / 4} \delta_{i j} \frac{K_{i}-K_{i}^{-1}}{q^{1 / 2}-q^{-1 / 2}} K_{j}^{1 / 2} K_{i}^{-1 / 2}=q^{1 / 2} \frac{K_{i}-K_{i}^{-1}}{q^{1 / 2}-q^{-1 / 2}}
\end{aligned}
$$

Lemma 2. Let $e_{i}=q^{-1 / 4} E_{i}, f_{i}=q^{-1 / 4} F_{i}, \omega_{i}^{ \pm 1}=K^{\mp 1} i=1,2$, and $\theta=q^{-1 / 2}$, we have that $U_{q}\left(\mathfrak{s l}_{3}\right)$ is generated by $e_{i}, f_{i}, \omega_{i}^{ \pm 1}, i=1,2$ with relations
(r1) $\omega_{i} e_{j}=\theta^{\left\langle\epsilon_{i}, \alpha_{j}\right\rangle} \theta^{-\left\langle\epsilon_{i+1}, \alpha_{j}\right\rangle} e_{j} \omega_{i}$.
(r2) $\omega_{i} f_{j}=\theta^{-\left\langle\epsilon_{i}, \alpha_{j}\right\rangle} \theta^{\left\langle\epsilon_{i+1}, \alpha_{j}\right\rangle} f_{j} \omega_{i}$
(r3) $\left[e_{i}, f_{j}\right]=\frac{\delta_{i j}}{\theta-\theta^{-1}}\left(\omega_{i}-\omega_{i}^{-1}\right)$,
(r4) $e_{1}^{2} e_{2}-\left(\theta+\theta^{-1}\right) e_{1} e_{2} e_{1}+e_{2} e_{1}^{2}=0, e_{1} e_{2}^{2}-\left(\theta+\theta^{-1}\right) e_{2} e_{1} e_{2}+e_{2}^{2} e_{1}=0$,
(r5) $f_{1}^{2} f_{2}-\left(\theta+\theta^{-1}\right) f_{1} f_{2} f_{1}+f_{2} f_{1}^{2}=0, f_{1} f_{2}^{2}-\left(\theta+\theta^{-1}\right) f_{2} f_{1} f_{2}+f_{2}^{2} f_{1}=0$,
and the coalgebra structure is given by

- $\Delta\left(e_{i}\right)=e_{i} \otimes 1+\omega_{i} \otimes e_{i}$
- $\Delta\left(f_{i}\right)+1 \otimes f_{i}+f_{i} \otimes \omega_{i}^{-1}$
- $\Delta\left(\omega_{i}^{ \pm}\right)=\omega_{i}^{ \pm} \otimes \omega_{i}^{ \pm}$.

Hence, the $U_{q}\left(\mathfrak{s l}_{3}\right)$ used in Dobrev's paper [1] is the quotient (identifying $\omega_{i}^{\prime}=$ w_{i}^{-1}) of the $U_{\theta, \theta^{-1}}\left(\mathfrak{s l}_{3}\right)$ used in [2] and [3] for $\theta=q^{-1 / 2}$.

1. Simple $u_{q}\left(\mathfrak{s l}_{3}\right)$-MODULES.

In [1], Dobrev describes all simple $U_{q}\left(\mathfrak{s l}_{3}\right)$ modules when q is a primitive ℓ th root of unity. We will only look at the modules that are also modules for the finite-dimensional quotient $\mathfrak{u}_{q}\left(\mathfrak{s l}_{3}\right)$ (quotient by $f_{i}^{\ell}=e_{i}^{\ell}=0$ and $\omega_{i}^{\ell}=1$) since these are the ones that can be obtained using Radford's construction (see [4], [3]).

The simple modules are quotients of Highest Weight Modules. A highest weight module V^{λ} is given by a highest weight vector v_{0} and a weight $\lambda \in \mathcal{H}^{*}(\mathcal{H}$ is the subalgebra of $U_{q}\left(\mathfrak{s l}_{3}\right)$ generated by the elements $\left.H_{i}\right)$, such that

$$
X_{i}^{+} v_{0}=0, i=1,2, \quad H v_{0}=\lambda(H) v_{0}, H \in \mathcal{H} .
$$

If we let G_{1} be the group generated by ω_{1} and ω_{2}, elements $\lambda \in \mathcal{H}^{*}$ correspond to algebra maps from $\mathbb{K} G_{1}$ to \mathbb{K} in the following way:

$$
\lambda\left(w_{i}\right)=\lambda\left(K_{i}^{-1}\right)={ }^{\operatorname{def}} q^{-\frac{1}{2} \lambda\left(H_{i}\right)}=\theta^{\lambda\left(H_{i}\right)} .
$$

In the same way, if we let G_{2} be the group in $U_{\theta, \theta^{-1}}\left(\mathfrak{s l}_{3}\right)$ generated by ω_{1}^{\prime} and ω_{2}^{\prime}, elements $\lambda \in \mathcal{H}^{*}$ correspond to algebra maps from $\mathbb{K} G_{2}$ to \mathbb{K} via

$$
\lambda\left(w_{i}^{\prime}\right)=\theta^{-\lambda\left(H_{i}\right)} .
$$

Let H be the co-opposite of the Hopf subalgebra of $\mathfrak{u}_{\theta, \theta^{-1}}\left(\mathfrak{s l}_{3}\right)$ generated by f_{i} and $\omega_{i}^{\prime}, i=1,2$. In [3] it was shown that simple $\mathfrak{u}_{\theta}\left(\mathfrak{s l}_{3}\right)$-modules are of the form $H \bullet_{\beta} g$, with $g=\omega_{1}^{\prime c} \omega_{2}^{\prime d} \in G_{2}(c, d \in\{0, \cdots, \ell-1\})$ and β the algebra map from $\mathbb{K} G_{2}$ to \mathbb{K} given by

$$
\beta\left(\omega_{1}^{\prime}\right)=-2 c+d \quad \text { and } \quad \beta\left(\omega_{2}^{\prime}\right)=c-2 d .
$$

If $(\ell, 3)=1$, taking $m_{i} \in\{1, \cdots, \ell\}, m_{1} \equiv(2 c-d+1) \bmod \ell$ and $m_{2} \equiv(2 d-c+$ 1) $\bmod \ell$, the simple modules are given by pairs $\left(m_{1}, m_{2}\right) \in\{1, \cdots, \ell\} \times\{1, \cdots, \ell\}$, where $\beta\left(\omega_{i}^{\prime}\right)=\theta^{-m_{i}+1}$ and $g=\omega_{1}^{\prime c} \omega_{2}^{\prime d}$ with

$$
\binom{c}{d}=\left(\begin{array}{rr}
-2 & 1 \\
1 & -2
\end{array}\right)^{-1}\binom{m_{1}}{m_{2}}
$$

In addition, in such a $H \cdot{ }_{\beta} g$ the following are satisfied:

- $\omega_{i}^{\prime}{ }_{\beta} g=\beta\left(\omega_{i}^{\prime}\right) g=\theta^{-m_{i}+1} g$. Hence, under the correspondence of algebra maps from $\mathbb{K} G_{2}$ to \mathbb{K} and elements in the dual of \mathcal{H}, we have that

$$
H_{i} \cdot g=\beta\left(H_{i}\right) g, \quad \text { with } \beta \in \mathcal{H}^{*} \text { given by } \beta\left(H_{i}\right)=m_{i}-1 .
$$

- $e_{i} \cdot g=0$, hence $X_{i}^{+} \cdot g=0, \quad i=1,2$.

Therefore $H \bullet_{\beta} g$ is a highest weight module, with highest weight $\beta \in \mathcal{H}^{*}$ given by $\beta\left(H_{i}\right)=m_{i}-1$, and highest weight vector g. In what follows, we show the correspondence between the modules $H \cdot \beta$ g and the ones constructed by Dobrev in [1] (the correspondence depends on the choice of parameters m_{1} and m_{2}).

Case 1. If $\boldsymbol{m}_{\mathbf{1}}+\boldsymbol{m}_{\mathbf{2}}<\boldsymbol{\ell}$. In this case, $H_{\bullet} g$ is isomorphic to $L_{m_{1} m_{2}}^{4}$ (type 4 in [1]) which is the only simple quotient of the $U_{q}\left(\mathfrak{s l}_{3}\right)$ highest weight module V^{λ}, with $\lambda\left(H_{i}\right)=m_{i}-1$. It follows from the formulas given in [1] that

$$
\operatorname{dim}\left(H \cdot{ }_{\beta} g\right)=\frac{m_{1} m_{2}\left(m_{1}+m_{2}\right)}{2}
$$

Case 2. If $m_{1}+m_{2}>\ell$.
\boldsymbol{a}. If $m_{i} \neq \ell$ for $i=1,2$ and we let $n_{1}=\ell-m_{2}$ and $n_{2}=\ell-m_{1}$, we have that $0<n_{i}<\ell$ and $n_{1}+n_{2}=2 \ell-\left(m_{1}+m_{2}\right)<\ell$. In this case, $H \cdot{ }_{\beta} g$ is isomorphic to $L_{n_{1} n_{2}}^{\prime 4}$ from [1], which is the only irreducible quotient of the $U_{q}\left(\mathfrak{s l}_{3}\right)$ highest weight module V^{γ} with $\gamma=\lambda-n_{3} \alpha_{3}$, where $\lambda\left(H_{i}\right)=n_{i}-1, i=1,2, n_{3}=n_{1}+n_{2}$ and $\alpha_{3}=\alpha_{1}+\alpha_{2}$. This follows from
$\gamma\left(H_{i}\right)=n_{i}-1-\left(n_{1}+n_{2}\right) \alpha_{3}\left(H_{i}\right)=n_{i}-1-\left(n_{1}+n_{2}\right)=-1-\left(\ell-m_{i}\right) \equiv\left(m_{i}-1\right) \bmod \ell$.
It follows from the formulas given in [1] that

$$
\operatorname{dim}\left(H \cdot{ }_{\beta} g\right)=\frac{m_{1} m_{2}\left(m_{1}+m_{2}\right)}{2}-\frac{n_{1} n_{2}\left(n_{1}+n_{2}\right)}{2} .
$$

b. If $m_{1}=\ell$ and $m_{2}<\ell / 2$, taking $n_{1}=m_{2}<\ell / 2$, we have that $H \cdot \beta$. g is isomorphic to $L_{n_{1}}^{52}$ from [1], which is the irreducible quotient of the $U_{q}\left(\mathfrak{s l}_{3}\right)$ highest weight module V^{γ} with $\gamma=\lambda-n_{2} \alpha_{2}$, where $n_{2}=\ell-n_{1}$ and $\lambda\left(H_{i}\right)=n_{1}-1$. This follows from

$$
\gamma\left(H_{1}\right)=\lambda\left(H_{1}\right)-n_{2} \alpha_{2}\left(H_{1}\right)=n_{1}-1+n_{2}=\ell-1=m_{1}-1
$$

and
$\gamma\left(H_{2}\right)=\lambda\left(H_{2}\right)-n_{2} \alpha_{2}\left(H_{2}\right)=n_{2}-1-2 n_{2}=-n_{2}-1=n_{1}-\ell-1 \equiv\left(m_{2}-1\right) \bmod \ell$.
Hence, by the formula from [1] we have that

$$
\operatorname{dim}\left(H \cdot{ }_{\beta} g\right)=\operatorname{dim}\left(L_{n_{1}}^{52}\right)=\frac{\ell n_{1}\left(\ell+n_{1}\right)}{2}=\frac{m_{1} m_{2}\left(m_{1}+m_{2}\right)}{2} .
$$

\boldsymbol{c}. If $m_{1}=\ell$ and $m_{2} \geq \ell / 2$, then

$$
\operatorname{dim}\left(H \cdot{ }_{\beta} g\right)=\operatorname{dim}\left(H \cdot{ }_{\beta^{\prime}} g^{\prime}\right),
$$

where ($\beta^{\prime}, g^{\prime}$) correspond to the choice of parameters $\left(m_{2}, m_{1}\right)=\left(n_{1}, \ell\right)$ with $n_{1} \geq \ell / 2$ (see Lemma 4). Hence, the dimension of $H \cdot{ }_{\beta} g$ can be obtained from the next case.
\boldsymbol{d}. If $m_{2}=\ell$ and $m_{1} \geq \ell / 2$. Taking $n_{1}=\ell-m_{1} \leq \ell / 2$, we have that $H \bullet_{\beta} g$ is isomorphic to $L_{n_{1}}^{51}$ from [1], which is the irreducible quotient of the $U_{q}\left(\mathfrak{s l}_{3}\right)$ highest weight module V^{γ} with $\gamma=\lambda-n_{1} \alpha_{1}$, where $\lambda\left(H_{1}\right)=n_{1}-1$ and $\lambda\left(H_{2}\right)=\ell-n_{1}-1$. This follows from
$\gamma\left(H_{1}\right)=\lambda\left(H_{1}\right)-n_{1} \alpha_{1}\left(H_{1}\right)=n_{1}-1-2 n_{1}==-n_{1}-1=m_{1}-\ell-1 \equiv\left(m_{1}-1\right) \bmod \ell$ and

$$
\gamma\left(H_{2}\right)=\lambda\left(H_{2}\right)-n_{1} \alpha_{1}\left(H_{2}\right)=\ell-n_{1}-1+n_{1}=\ell-1=m_{2}-1 .
$$

Hence, by the dimensions formulas from [1] we have that

$$
\operatorname{dim}(H \cdot \beta g)=\frac{\ell\left(\ell-n_{1}\right)\left(2 \ell-n_{1}\right)}{2}=\frac{m_{1} m_{2}\left(m_{1}+m_{2}\right)}{2} .
$$

\boldsymbol{e}. If $m_{2}=\ell$ and $m_{1}<\ell / 2$. Again, $\operatorname{dim}\left(H \cdot{ }_{\beta} g\right)=\operatorname{dim}\left(H^{\prime}{ }_{\beta^{\prime}} g^{\prime}\right)$, with $\left(\beta^{\prime}, g^{\prime}\right)$ corresponding to $\left(m_{2}, m_{1}\right)=\left(\ell, n_{2}\right)$ with $n_{2}<\ell / 2$. Hence, by case 2.b. we have that

$$
\operatorname{dim}\left(H \cdot{ }_{\beta} g\right)=\operatorname{dim}\left(H \cdot \bullet_{\beta^{\prime}} g^{\prime}\right)=\frac{m_{1} m_{2}\left(m_{1}+m_{2}\right)}{2} .
$$

Case 3. If $m_{1}+m_{2}=\ell$.
\boldsymbol{a}. If $m_{1} \leq \ell / 2, H \cdot{ }_{\beta} g$ is isomorphic to $L_{m_{1}}^{5}$ from [1], which is the only irreducible quotient of the $U_{q}\left(\mathfrak{s l}_{3}\right)$ highest weight module V^{λ} with $\lambda\left(H_{i}\right)=m_{i}-1$. It follows that

$$
\operatorname{dim}\left(H \cdot{ }_{\beta} g\right)=\frac{m_{1}\left(\ell-m_{1}\right) \ell}{2}=\frac{m_{1} m_{2}\left(m_{1}+m_{2}\right)}{2}
$$

b. If $m_{1}>\ell / 2$, taking $n_{1}=m_{2}$ and $n_{2}=m_{1}$ we have that $n_{1}<\ell / 2$ and if $\left(\beta^{\prime}, g^{\prime}\right)$ correspond to the choice of parameters $\left(n_{1}, n_{2}\right)$, we have that

$$
\operatorname{dim}\left(H \cdot{ }_{\beta} g\right)=\operatorname{dim}\left(H \cdot{ }_{\beta^{\prime}} g^{\prime}\right)=\operatorname{dim}\left(L_{n_{1}}^{5}\right)=\frac{n_{1} n_{2}\left(n_{1}+n_{2}\right)}{2}=\frac{m_{1} m_{2}\left(m_{1}+m_{2}\right)}{2}
$$

The above discussion shows that if $H \cdot{ }_{\beta} g$ is a simple $\mathfrak{u}_{\theta}\left(\mathfrak{s l}_{3}\right)$-module, with $\beta\left(\omega_{i}^{\prime}\right)=$ $\theta^{m_{i}-1}, m_{i} \in\{1, \cdots, \ell\}, i=1,2$, then

- If $m_{1}+m_{2} \leq \ell$,

$$
\operatorname{dim}\left(H \bullet_{\beta} g\right)=\frac{m_{1} m_{2}\left(m_{1}+m_{2}\right)}{2}
$$

- If $m_{1}+m_{2}>\ell$ and we let $m_{i}^{\prime}=\ell-m_{i}$, then

$$
\operatorname{dim}\left(H \cdot{ }_{\beta} g\right)=\frac{m_{1} m_{2}\left(m_{1}+m_{2}\right)}{2}-\frac{m_{1}^{\prime} m_{2}^{\prime}\left(m_{1}^{\prime}+m_{2}^{\prime}\right)}{2}
$$

2. Conjugation

Let $\Phi: K \rightarrow L$ be an algebra homomorphism and (M, \cdot) a left L-module. Then M is a left K-module, with the action given by $k \cdot \Phi m=\Phi(k) \cdot m$. Moreover, if Φ is surjective and N is a K-submodule of M, N is also a L-submodule of M. If $\Psi: L \rightarrow K$ is a coalgebra homomorphism and (M, δ) is a right L-comodule, then $\left(M, \delta_{\Psi}\right)$ is a right K-comodule with $\delta_{\Psi}(m)=\left(\operatorname{id}_{M} \otimes \Psi\right) \delta(m)$. Moreover, if Ψ is injective and N is a right K-subcomodule of M, then N is also a L-subcomodule of M.

Lemma 3. Let $\Phi: K \rightarrow L$ be a bialgebra isomorphism and $(M, \cdot, \delta) \in{ }_{L} \mathcal{Y D}^{L}$, then $M_{\Phi}=\left(M,{ }_{\Phi}, \delta_{\Phi^{-1}}\right) \in{ }_{K} \mathcal{Y D}^{K}$. Moreover, M_{θ} is simple if M is simple.

Proof. The only thing left to check is the compatibility between the action and coaction. Since $(M, \cdot, \delta) \in{ }_{L} \mathcal{Y D}^{L}$ we have that

$$
\sum l_{1} \cdot m_{0} \otimes l_{2} m_{1}=\sum\left(l_{2} \cdot m\right)_{0} \otimes\left(l_{2} \cdot m\right)_{1} l_{1},
$$

for all $l \in L, m \in M$, where $\delta(n)=\sum n_{0} \otimes n_{1}$, for all $n \in M$. By the definitions of ${ }_{\Phi}$ and $\delta_{\Phi-1}$, we have to prove that

$$
\sum \Phi\left(k_{1}\right) \cdot m_{0} \otimes k_{2} \Phi^{-1}\left(m_{1}\right)=\sum\left(\Phi\left(k_{2}\right) \cdot m\right)_{0} \otimes \Phi^{-1}\left(\left(\Phi\left(k_{2}\right) \cdot m\right)_{1}\right) k_{1}
$$

Now,

$$
\begin{aligned}
\sum \Phi\left(k_{1}\right) \cdot m_{0} \otimes k_{2} \Phi^{-1}\left(m_{1}\right) & =\left(\operatorname{id}_{M} \otimes \Phi^{-1}\right)\left(\sum \Phi\left(k_{1}\right) \cdot m_{0} \otimes \Phi\left(k_{2}\right) m_{1}\right) \\
& =\left(\operatorname{id}_{M} \otimes \Phi^{-1}\right)\left(\sum \Phi(k)_{1} \cdot m_{0} \otimes \Phi(k)_{2} m_{1}\right) \\
& =\left(\operatorname{id}_{M} \otimes \Phi^{-1}\right)\left(\sum\left(\Phi(k)_{2} \cdot m\right)_{0} \otimes\left(\Phi(k)_{2} \cdot m\right)_{1} \Phi(k)_{1}\right) \\
& =\sum\left(\Phi(k)_{2} \cdot m\right)_{0} \otimes \Phi^{-1}\left(\left(\Phi(k)_{2} \cdot m\right)_{1}\right) k_{1} .
\end{aligned}
$$

As before, let H be the co-opposite of the Hopf subalgebra of $\mathfrak{u}_{\theta, \theta^{-1}}\left(\mathfrak{s l}_{3}\right)$ generated by f_{i} and $\omega_{i}^{\prime}, i=1,2$. Let $\tau=(1,2)$ be the transposition that exchanges the indices 1 and 2. It is easy to see that there is Hopf algebra isomorphism $\Phi: H \rightarrow H$ such that $\Phi\left(f_{i}\right)=f_{\tau(i)}$ and $\Phi\left(\omega_{i}^{\prime}\right)=\omega_{\tau(i)}^{\prime}, i=1,2$. For $\left(m_{1}, m_{2}\right) \in\{1, \cdots, l\}^{2}$, let $M\left(m_{1}, m_{2}\right)=H \cdot{ }_{\beta} g$ be the simple $\mathfrak{u}_{\theta}\left(\mathfrak{S l}_{3}\right)$-module corresponding to the parameters $\left(m_{1}, m_{2}\right)$. That is, $\beta\left(\omega_{i}^{\prime}\right)=\theta^{-m_{i}+1}$ and $g=\omega_{1}^{\prime c} \omega_{2}^{\prime d}$ with

$$
\binom{c}{d}=\left(\begin{array}{rr}
-2 & 1 \\
1 & -2
\end{array}\right)^{-1}\binom{m_{1}}{m_{2}} .
$$

By the last lemma, $\left(M\left(m_{1}, m_{2}\right)\right)_{\Phi}$ is also a simple H-Yetter-Drinfel'd module.
Lemma 4. If $\Phi: H \rightarrow H$ is the Hopf algebra isomorphism that exchanges subindices, and $\left(m_{1}, m_{2}\right) \in\{1, \cdots, \ell\}^{2}$, then

$$
\left(M\left(m_{1}, m_{2}\right)\right)_{\Phi} \simeq M\left(m_{2}, m_{1}\right) .
$$

In particular, $\operatorname{dim}\left(M\left(m_{1}, m_{2}\right)\right)=\operatorname{dim}\left(M\left(m_{2}, m_{1}\right)\right)$.
Proof. As before, $M\left(m_{1}, m_{2}\right)=H \cdot{ }_{\beta} g$ with $g=\omega_{1}^{\prime c} \omega_{2}^{\prime d}$ and $\beta\left(\omega_{i}^{\prime}\right)=\theta^{m_{i}-1}$. Since $\left(M\left(m_{1}, m_{2}\right)\right)_{\Phi}$ is a simple H-Yetter-Drinfel'd module, there exist $g^{\prime}=\omega_{1}^{\prime e} \omega_{2}^{\prime f} \in$ G_{2} and β^{\prime} and algebra map from $\mathbb{K} G_{2}$ to \mathbb{K} given by $\beta^{\prime}\left(\omega_{i}^{\prime}\right)=\theta^{n_{i}-1}, n_{i} \in$ $\{1, \cdots, \ell\}, i=1,2$, such that $\left(M\left(m_{1}, m_{2}\right)\right)_{\Phi} \simeq H \cdot{ }_{\beta}{ }^{\prime} g^{\prime}$ as Yetter-Drinfel'd modules. Let $T:\left(M\left(m_{1}, m_{2}\right)\right)_{\Phi} \rightarrow H \cdot{ }_{\beta^{\prime}} g^{\prime}$ be a Yetter-Drinfel'd module isomorphism. Since T is a right comodule homomorphism, $\left(T \otimes \mathrm{id}_{H}\right) \circ \delta_{\Phi}=\Delta \circ T$ and

$$
\begin{equation*}
T(g) \otimes \Phi^{-1}(g)=\Delta(T(g)) . \tag{5}
\end{equation*}
$$

Then $\mathbb{K} T(g)$ is a (non-zero) right-coideal of $H \cdot{ }_{\beta}{ }^{\prime} g^{\prime}$, but the only non-zero coideal contained in $H \cdot \beta^{\prime} g^{\prime}$ is $\mathbb{K} g^{\prime}$ (see [4]). Therefore $T(g)$ is a multiple of g, and we may assume that $T(g)=g^{\prime}$. Applying $\epsilon \otimes$ id to equation 5, we get that $\epsilon\left(g^{\prime}\right) \Phi^{-1}(g)=$ g^{\prime}. Since both $\Phi^{-1}(g)$ and g^{\prime} are grouplike elements, and grouplike elements are linearly independent, we have that $g^{\prime}=\Phi^{-1}(g)=\omega_{1}^{\prime d} \omega_{2}^{\prime c}$; therefore $(e, f)=(d, c)$, and so

$$
\binom{e}{f}=\binom{d}{c}=\left(\begin{array}{rr}
-2 & 1 \\
1 & -2
\end{array}\right)^{-1}\binom{m_{2}}{m_{1}} .
$$

Since T is a homomorphism of left H-modules, $T\left(\omega_{i}^{\prime} \cdot \Phi g\right)=\omega_{i}^{\prime} \cdot \beta^{\prime} T(g)$. Since

$$
T\left(\omega_{i}^{\prime} \cdot \Phi g\right)=T\left(\omega_{\tau(i) \cdot \beta}^{\prime} g\right)=T\left(\theta^{m_{\tau(i)}-1} g\right)=\theta^{m_{\tau(i)}-1} g^{\prime}
$$

and

$$
\omega_{i^{\prime} \cdot \beta^{\prime}}^{\prime} T(g)=\theta^{n_{i}-1} g^{\prime},
$$

it follows that $\left(n_{1}, n_{2}\right)=\left(m_{2}, m_{1}\right)$, and $H \cdot{ }_{\beta^{\prime}} g^{\prime}=M\left(m_{2}, m_{1}\right)$.

References

[1] V.K. Dobrev, Representations of Quantum Groups, Symmetries in Science V (Lochau 1990), 93-135, Plenum Press, NY, 1991.
[2] G. Benkart, S. Witherspoon, Restricted two-parameter quantum groups, in: Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry, 293-318, Fields Inst. Commun., vol. 40, Amer. Math. Soc., Providence, RI 2004.
[3] M. Pereira, Factorization of simple modules for certain pointed Hopf algebras, J. Algebra 318 (2007) 957-980.
[4] D.E. Radford, On oriented quantum algebras derived from representations of the quantum double of a finite-dimensional Hopf algebra, J. Algebra 270 (2) (2003), 670-695.

