DIMENSIONS OF SIMPLE $u_q(\mathfrak{sl}_3)$ -MODULES

MARIANA PEREIRA

This is a summary of the correspondence between the simple $u_q(\mathfrak{sl}_3)$ -modules described by Dobrev in [1] and those described using a method introduced by Radford ([4]) that appeared in [3].

First we will describe how the quantum groups in [3] can be seen as the quantum groups used by Dobrev. The parameter used when referring to Dobrev's modules will be called q and the parameter used when referring to modules constructed using Radford's method will be denoted by θ .

In [1] $U_q(\mathfrak{sl}_3)$ is the associative algebra over \mathbb{C} , with generators X_i^{\pm} , H_i , i = 1, 2and relations

- $\begin{array}{l} (\mathrm{R1}) \ [H_i, H_j] = 0 \\ (\mathrm{R2}) \ [H_i, X_j^{\pm}] = \pm a_{ij} X_j^{\pm} \\ (\mathrm{R3}) \ [X_i^+, X_j^-] = \delta_{ij} \frac{q^{H_i/2} q^{-H_i/2}}{q^{1/2} q^{-1/2}} = \delta_{ij} [H_i]_q. \\ (\mathrm{R4}) \ \sum_{k=0}^2 (-1)^k {2 \choose k}_q (X_i^{\pm})^k X_j^{\pm} (X_i^{\pm})^{2-k} = 0, \ i \neq j, \end{array}$

where $(a_{ij}) = (2(\alpha_i, \alpha_j)/(\alpha_i, \alpha_i))$ is the Cartan matrix of \mathfrak{sl}_3 . It follows from (R4) that $H_i^m X_j^{\pm} = X_j (H_i \pm a_{ij})^n$.

Lemma 1. Changing the generating elements to

$$K_i^{\pm 1} = q^{\pm H_i/2}, \quad E_i = X_i^+ K_i^{-1/2}, \quad F_i = X_i^- K_i^{1/2}$$

the relations are replaced by

(R1')
$$K_i K_i^{-1} = K_i^{-1} K_i = 1, \quad K_1 K_2 = K_2 K_1$$

(R2') $K_i X_j^{\pm} K_i = q^{\pm a_{ij}/2} X_j^{\pm}$
(R3') $[E_i, F_j] = \delta_{ij} q^{1/2} \frac{K_i - K_i^{-1}}{q^{1/2} - q^{-1/2}}.$
(R4') $\sum_{k=0}^2 (-1)^k {\binom{2}{k}}_q E_i^k E_j E_i^{2-k} = 0 = \sum_{k=0}^2 (-1)^k {\binom{2}{k}}_q F_i^k F_j F_i^{2-k}, i \neq j,$

The coalgebra structure is given by

•
$$\Delta(K_i^{\pm}) = K_i^{\pm} \otimes K_i^{\pm}$$

•
$$\Delta(E_i) = E_i \otimes 1 + K_i^{-1} \otimes E_i$$

• $\Delta(F_i) = F_i \otimes K_i + 1 \otimes F_i$

Date: July 20, 2009.

MARIANA PEREIRA

Proof. We will show (R3') (the other relations are shown in [1]). First note that, if $m \in \mathbb{R}$, $K_i^m X_j^{\pm} = q^{\pm a_{ij}m/2} X_j^{\pm} K_i^m$: if $q = e^{\alpha}$ then

$$\begin{split} K_i^m X_j^{\pm} &= q^{mH_i/2} X_j^{\pm} = e^{\alpha mH_i/2} X_j^{\pm} = \sum \frac{1}{n!} \left(\frac{\alpha m}{2}\right)^n H_i^n X_j^{\pm} \\ &= \sum \frac{1}{n!} \left(\frac{\alpha m}{2}\right)^n X_j^{\pm} (H_i \pm a_{ij})^n = X_j^{\pm} \sum \frac{1}{n!} \left(\frac{\alpha m(H_i \pm a_{ij})}{2}\right)^n \\ &= X_j^{\pm} e^{\frac{\alpha m(H_i \pm a_{ij})}{2}} = X_j^{\pm} q^{mH_i/2 \pm a_{ij}m/2} = q^{\pm a_{ij}m/2} X_j^{\pm} K_i^m. \end{split}$$

In particular, if m = 1 we have (R2') and if m = 1/2 we have that $K_i^{1/2} X_j^{\pm} =$ $q^{\pm a_{ij}/4} X_i^{\pm} K_i^{\pm 1/2}.$

$$\begin{split} [E_i, F_j] &= X_i^+ K_i^{-1/2} X_j^- K_j^{+1/2} - X_j^- K_j^{+1/2} X_i^+ K_i^{-1/2} \\ &= q^{-(-a_{ij}/4)} X_i^+ X_j^- K_i^{-1/2} K_j^{1/2} - q^{a_{ij}/4} X_j^- X_i^+ K_j^{1/2} K_i^{-1/2} \\ &= q^{a_{ij}/4} (X_i^+ X_j^- - X_j^- X_i^+) K_j^{1/2} K_i^{-1/2} \\ &= q^{a_{ij}/4} \delta_{ij} \frac{K_i - K_i^{-1}}{q^{1/2} - q^{-1/2}} K_j^{1/2} K_i^{-1/2} = q^{1/2} \frac{K_i - K_i^{-1}}{q^{1/2} - q^{-1/2}} \end{split}$$

Lemma 2. Let $e_i = q^{-1/4}E_i$, $f_i = q^{-1/4}F_i$, $\omega_i^{\pm 1} = K^{\mp 1}$ i = 1, 2, and $\theta = q^{-1/2}$, we have that $U_q(\mathfrak{sl}_3)$ is generated by $e_i, f_i, \omega_i^{\pm 1}, i = 1, 2$ with relations

- (r1) $\omega_i e_j = \theta^{\langle \epsilon_i, \alpha_j \rangle} \theta^{-\langle \epsilon_{i+1}, \alpha_j \rangle} e_j \omega_i.$ (r2) $\omega_i f_j = \theta^{-\langle \epsilon_i, \alpha_j \rangle} \theta^{\langle \epsilon_{i+1}, \alpha_j \rangle} f_j \omega_i$ $\begin{array}{l} (\mathbf{r3}) \ [e_i, f_j] = \frac{\delta_{ij}}{\theta - \theta^{-1}} (\omega_i - \omega_i^{-1}), \\ (\mathbf{r4}) \ e_1^2 e_2 - (\theta + \theta^{-1}) e_1 e_2 e_1 + e_2 e_1^2 = 0, \ e_1 e_2^2 - (\theta + \theta^{-1}) e_2 e_1 e_2 + e_2^2 e_1 = 0, \\ (\mathbf{r5}) \ f_1^2 f_2 - (\theta + \theta^{-1}) f_1 f_2 f_1 + f_2 f_1^2 = 0, \ f_1 f_2^2 - (\theta + \theta^{-1}) f_2 f_1 f_2 + f_2^2 f_1 = 0, \end{array}$ and the coalgebra structure is given by

 - $\Delta(e_i) = e_i \otimes 1 + \omega_i \otimes e_i$ $\Delta(f_i) + 1 \otimes f_i + f_i \otimes \omega_i^{-1}$ $\Delta(\omega_i^{\pm}) = \omega_i^{\pm} \otimes \omega_i^{\pm}.$

Hence, the $U_q(\mathfrak{sl}_3)$ used in Dobrev's paper [1] is the quotient (identifying $\omega'_i =$ w_i^{-1}) of the $U_{\theta,\theta^{-1}}(\mathfrak{sl}_3)$ used in [2] and [3] for $\theta = q^{-1/2}$.

1. SIMPLE $u_a(\mathfrak{sl}_3)$ -MODULES.

In [1], Dobrev describes all simple $U_q(\mathfrak{sl}_3)$ modules when q is a primitive ℓ th root of unity. We will only look at the modules that are also modules for the finite-dimensional quotient $\mathfrak{u}_q(\mathfrak{sl}_3)$ (quotient by $f_i^\ell = e_i^\ell = 0$ and $\omega_i^\ell = 1$) since these are the ones that can be obtained using Radford's construction (see [4], [3]).

The simple modules are quotients of Highest Weight Modules. A highest weight module V^{λ} is given by a highest weight vector v_0 and a weight $\lambda \in \mathcal{H}^*$ (\mathcal{H} is the subalgebra of $U_q(\mathfrak{sl}_3)$ generated by the elements H_i), such that

$$X_i^+ v_0 = 0, \ i = 1, 2, \quad H v_0 = \lambda(H) v_0, \ H \in \mathcal{H}$$

If we let G_1 be the group generated by ω_1 and ω_2 , elements $\lambda \in \mathcal{H}^*$ correspond to algebra maps from $\mathbb{K}G_1$ to \mathbb{K} in the following way:

$$\lambda(w_i) = \lambda(K_i^{-1}) =^{\operatorname{def}} q^{-\frac{1}{2}\lambda(H_i)} = \theta^{\lambda(H_i)}.$$

In the same way, if we let G_2 be the group in $U_{\theta,\theta^{-1}}(\mathfrak{sl}_3)$ generated by ω'_1 and ω'_2 , elements $\lambda \in \mathcal{H}^*$ correspond to algebra maps from $\mathbb{K}G_2$ to \mathbb{K} via

$$\lambda(w_i') = \theta^{-\lambda(H_i)}$$

Let H be the co-opposite of the Hopf subalgebra of $\mathfrak{u}_{\theta,\theta^{-1}}(\mathfrak{sl}_3)$ generated by f_i and ω'_i , i = 1, 2. In [3] it was shown that simple $\mathfrak{u}_{\theta}(\mathfrak{sl}_3)$ -modules are of the form $H_{\beta}g$, with $g = \omega'^c_1 \omega'^d_2 \in G_2$ $(c, d \in \{0, \dots, \ell-1\})$ and β the algebra map from $\mathbb{K}G_2$ to \mathbb{K} given by

$$\beta(\omega_1') = -2c + d$$
 and $\beta(\omega_2') = c - 2d$.

If $(\ell, 3) = 1$, taking $m_i \in \{1, \dots, \ell\}, m_1 \equiv (2c - d + 1) \mod \ell$ and $m_2 \equiv (2d - c + 1) \mod \ell$, the simple modules are given by pairs $(m_1, m_2) \in \{1, \dots, \ell\} \times \{1, \dots, \ell\}$, where $\beta(\omega'_i) = \theta^{-m_i+1}$ and $g = \omega'^c_1 \omega'^d_2$ with

$$\begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}^{-1} \begin{pmatrix} m_1 \\ m_2 \end{pmatrix}$$

In addition, in such a $H_{\beta}g$ the following are satisfied:

• $\omega'_{i \cdot \beta} g = \beta(\omega'_i) g = \theta^{-m_i+1} g$. Hence, under the correspondence of algebra maps from $\mathbb{K}G_2$ to \mathbb{K} and elements in the dual of \mathcal{H} , we have that

$$H_i \cdot g = \beta(H_i)g$$
, with $\beta \in \mathcal{H}^*$ given by $\beta(H_i) = m_i - 1$.

• $e_i \cdot g = 0$, hence $X_i^+ \cdot g = 0$, i = 1, 2.

Therefore $H_{\beta g}$ is a highest weight module, with highest weight $\beta \in \mathcal{H}^*$ given by $\beta(H_i) = m_i - 1$, and highest weight vector g. In what follows, we show the correspondence between the modules $H_{\beta g}$ and the ones constructed by Dobrev in [1] (the correspondence depends on the choice of parameters m_1 and m_2).

Case 1. If $m_1 + m_2 < \ell$. In this case, $H_{\beta}g$ is isomorphic to $L^4_{m_1m_2}$ (type 4 in [1]) which is the only simple quotient of the $U_q(\mathfrak{sl}_3)$ highest weight module V^{λ} , with $\lambda(H_i) = m_i - 1$. It follows from the formulas given in [1] that

$$\dim(H_{\boldsymbol{\cdot}_{\beta}}g) = \frac{m_1m_2(m_1+m_2)}{2}$$

Case 2. If $m_1 + m_2 > \ell$.

MARIANA PEREIRA

a. If $m_i \neq \ell$ for i = 1, 2 and we let $n_1 = \ell - m_2$ and $n_2 = \ell - m_1$, we have that $0 < n_i < \ell$ and $n_1 + n_2 = 2\ell - (m_1 + m_2) < \ell$. In this case, $H_{\cdot\beta}g$ is isomorphic to $L'_{n_1n_2}^4$ from [1], which is the only irreducible quotient of the $U_q(\mathfrak{sl}_3)$ highest weight module V^{γ} with $\gamma = \lambda - n_3\alpha_3$, where $\lambda(H_i) = n_i - 1$, $i = 1, 2, n_3 = n_1 + n_2$ and $\alpha_3 = \alpha_1 + \alpha_2$. This follows from

$$\gamma(H_i) = n_i - 1 - (n_1 + n_2)\alpha_3(H_i) = n_i - 1 - (n_1 + n_2) = -1 - (\ell - m_i) \equiv (m_i - 1) \mod \ell.$$

It follows from the formulas given in [1] that

It follows from the formulas given in [1] that

$$\dim(H_{\cdot\beta}g) = \frac{m_1m_2(m_1+m_2)}{2} - \frac{n_1n_2(n_1+n_2)}{2}.$$

b. If $m_1 = \ell$ and $m_2 < \ell/2$, taking $n_1 = m_2 < \ell/2$, we have that $H_{\beta g}$ is isomorphic to $L_{n_1}^{52}$ from [1], which is the irreducible quotient of the $U_q(\mathfrak{sl}_3)$ highest weight module V^{γ} with $\gamma = \lambda - n_2 \alpha_2$, where $n_2 = \ell - n_1$ and $\lambda(H_i) = n_1 - 1$. This follows from

$$\gamma(H_1) = \lambda(H_1) - n_2 \alpha_2(H_1) = n_1 - 1 + n_2 = \ell - 1 = m_1 - 1$$

and

$$\gamma(H_2) = \lambda(H_2) - n_2 \alpha_2(H_2) = n_2 - 1 - 2n_2 = -n_2 - 1 = n_1 - \ell - 1 \equiv (m_2 - 1) \mod \ell.$$

Hence, by the formula from [1] we have that

$$\dim(H_{\flat\beta}g) = \dim(L_{n_1}^{52}) = \frac{\ell n_1(\ell + n_1)}{2} = \frac{m_1 m_2(m_1 + m_2)}{2}$$

c. If $m_1 = \ell$ and $m_2 \ge \ell/2$, then

$$\dim(H_{\boldsymbol{\cdot}\beta}g) = \dim(H_{\boldsymbol{\cdot}\beta'}g'),$$

where (β', g') correspond to the choice of parameters $(m_2, m_1) = (n_1, \ell)$ with $n_1 \ge \ell/2$ (see Lemma 4). Hence, the dimension of $H_{\beta}g$ can be obtained from the next case.

d. If $m_2 = \ell$ and $m_1 \geq \ell/2$. Taking $n_1 = \ell - m_1 \leq \ell/2$, we have that $H_{\boldsymbol{\cdot}\beta}g$ is isomorphic to $L_{n_1}^{51}$ from [1], which is the irreducible quotient of the $U_q(\mathfrak{sl}_3)$ highest weight module V^{γ} with $\gamma = \lambda - n_1\alpha_1$, where $\lambda(H_1) = n_1 - 1$ and $\lambda(H_2) = \ell - n_1 - 1$. This follows from

$$\gamma(H_1) = \lambda(H_1) - n_1 \alpha_1(H_1) = n_1 - 1 - 2n_1 = -n_1 - 1 = m_1 - \ell - 1 \equiv (m_1 - 1) \mod \ell$$

and

and

$$\gamma(H_2) = \lambda(H_2) - n_1 \alpha_1(H_2) = \ell - n_1 - 1 + n_1 = \ell - 1 = m_2 - 1.$$

Hence, by the dimensions formulas from [1] we have that

$$\dim(H_{\beta}g) = \frac{\ell(\ell - n_1)(2\ell - n_1)}{2} = \frac{m_1m_2(m_1 + m_2)}{2}$$

e. If $m_2 = \ell$ and $m_1 < \ell/2$. Again, $\dim(H_{\cdot\beta}g) = \dim(H'_{\cdot\beta'}g')$, with (β', g') corresponding to $(m_2, m_1) = (\ell, n_2)$ with $n_2 < \ell/2$. Hence, by case 2.b. we have that

$$\dim(H_{{}^{\bullet}\beta}g) = \dim(H_{{}^{\bullet}\beta'}g') = \frac{m_1m_2(m_1 + m_2)}{2}$$

Case 3. If $m_1 + m_2 = \ell$.

a. If $m_1 \leq \ell/2$, $H_{\beta}g$ is isomorphic to $L_{m_1}^5$ from [1], which is the only irreducible quotient of the $U_q(\mathfrak{sl}_3)$ highest weight module V^{λ} with $\lambda(H_i) = m_i - 1$. It follows that

$$\dim(H_{\cdot\beta}g) = \frac{m_1(\ell - m_1)\ell}{2} = \frac{m_1m_2(m_1 + m_2)}{2}$$

b. If $m_1 > \ell/2$, taking $n_1 = m_2$ and $n_2 = m_1$ we have that $n_1 < \ell/2$ and if (β', g') correspond to the choice of parameters (n_1, n_2) , we have that

$$\dim(H_{\cdot\beta}g) = \dim(H_{\cdot\beta'}g') = \dim(L^5_{n_1}) = \frac{n_1n_2(n_1+n_2)}{2} = \frac{m_1m_2(m_1+m_2)}{2}$$

The above discussion shows that if $H_{\beta g}$ is a simple $\mathfrak{u}_{\theta}(\mathfrak{sl}_3)$ -module, with $\beta(\omega'_i) = \theta^{m_i-1}, m_i \in \{1, \dots, \ell\}, i = 1, 2, \text{ then}$

• If $m_1 + m_2 \leq \ell$,

$$\dim(H_{\cdot\beta}g) = \frac{m_1m_2(m_1 + m_2)}{2}$$

• If $m_1 + m_2 > \ell$ and we let $m'_i = \ell - m_i$, then

$$\dim(H_{\cdot\beta}g) = \frac{m_1m_2(m_1+m_2)}{2} - \frac{m'_1m'_2(m'_1+m'_2)}{2}.$$

2. Conjugation

Let $\Phi: K \to L$ be an algebra homomorphism and (M, \cdot) a left *L*-module. Then M is a left *K*-module, with the action given by $k \cdot_{\Phi} m = \Phi(k) \cdot m$. Moreover, if Φ is surjective and N is a *K*-submodule of M, N is also a *L*-submodule of M. If $\Psi: L \to K$ is a coalgebra homomorphism and (M, δ) is a right *L*-comodule, then (M, δ_{Ψ}) is a right *K*-comodule with $\delta_{\Psi}(m) = (\mathrm{id}_M \otimes \Psi)\delta(m)$. Moreover, if Ψ is injective and N is a right *K*-subcomodule of M, then N is also a *L*-subcomodule of M.

Lemma 3. Let $\Phi : K \to L$ be a bialgebra isomorphism and $(M, \cdot, \delta) \in {}_{L}\mathcal{YD}^{L}$, then $M_{\Phi} = (M, \cdot_{\Phi}, \delta_{\Phi^{-1}}) \in {}_{K}\mathcal{YD}^{K}$. Moreover, M_{θ} is simple if M is simple.

MARIANA PEREIRA

Proof. The only thing left to check is the compatibility between the action and coaction. Since $(M, \cdot, \delta) \in {}_{L}\mathcal{YD}^{L}$ we have that

$$\sum_{l=1}^{\infty} l_1 \cdot m_0 \otimes l_2 m_1 = \sum_{l=1}^{\infty} (l_2 \cdot m)_0 \otimes (l_2 \cdot m)_1 l_1$$

for all $l \in L$, $m \in M$, where $\delta(n) = \sum n_0 \otimes n_1$, for all $n \in M$. By the definitions of \cdot_{Φ} and $\delta_{\Phi^{-1}}$, we have to prove that

$$\sum \Phi(k_1) \cdot m_0 \otimes k_2 \Phi^{-1}(m_1) = \sum (\Phi(k_2) \cdot m)_0 \otimes \Phi^{-1}((\Phi(k_2) \cdot m)_1) k_1$$

Now,

$$\sum \Phi(k_1) \cdot m_0 \otimes k_2 \Phi^{-1}(m_1) = (\mathrm{id}_M \otimes \Phi^{-1}) \left(\sum \Phi(k_1) \cdot m_0 \otimes \Phi(k_2) m_1 \right)$$

= $(\mathrm{id}_M \otimes \Phi^{-1}) \left(\sum \Phi(k)_1 \cdot m_0 \otimes \Phi(k)_2 m_1 \right)$
= $(\mathrm{id}_M \otimes \Phi^{-1}) \left(\sum (\Phi(k)_2 \cdot m)_0 \otimes (\Phi(k)_2 \cdot m)_1 \Phi(k)_1 \right)$
= $\sum (\Phi(k)_2 \cdot m)_0 \otimes \Phi^{-1} ((\Phi(k)_2 \cdot m)_1) k_1.$

As before, let H be the co-opposite of the Hopf subalgebra of $\mathfrak{u}_{\theta,\theta^{-1}}(\mathfrak{sl}_3)$ generated by f_i and ω'_i , i = 1, 2. Let $\tau = (1, 2)$ be the transposition that exchanges the indices 1 and 2. It is easy to see that there is Hopf algebra isomorphism $\Phi : H \to H$ such that $\Phi(f_i) = f_{\tau(i)}$ and $\Phi(\omega'_i) = \omega'_{\tau(i)}$, i = 1, 2. For $(m_1, m_2) \in \{1, \dots, l\}^2$, let $M(m_1, m_2) = H_{\beta}g$ be the simple $\mathfrak{u}_{\theta}(\mathfrak{sl}_3)$ -module corresponding to the parameters (m_1, m_2) . That is, $\beta(\omega'_i) = \theta^{-m_i+1}$ and $g = \omega'_1 \omega'_2 \omega'_2$ with

$$\left(\begin{array}{c}c\\d\end{array}\right) = \left(\begin{array}{c}-2&1\\1&-2\end{array}\right)^{-1} \left(\begin{array}{c}m_1\\m_2\end{array}\right).$$

By the last lemma, $(M(m_1, m_2))_{\Phi}$ is also a simple *H*-Yetter-Drinfel'd module.

Lemma 4. If $\Phi : H \to H$ is the Hopf algebra isomorphism that exchanges subindices, and $(m_1, m_2) \in \{1, \dots, \ell\}^2$, then

$$(M(m_1, m_2))_{\Phi} \simeq M(m_2, m_1).$$

In particular, $\dim(M(m_1, m_2)) = \dim(M(m_2, m_1)).$

Proof. As before, $M(m_1, m_2) = H \cdot_{\beta} g$ with $g = \omega_1'^c \omega_2'^d$ and $\beta(\omega_i') = \theta^{m_i - 1}$. Since $(M(m_1, m_2))_{\Phi}$ is a simple H-Yetter-Drinfel'd module, there exist $g' = \omega_1'^e \omega_2'^f \in G_2$ and β' and algebra map from $\mathbb{K}G_2$ to \mathbb{K} given by $\beta'(\omega_i') = \theta^{n_i - 1}$, $n_i \in \{1, \dots, \ell\}, i = 1, 2$, such that $(M(m_1, m_2))_{\Phi} \simeq H \cdot_{\beta'} g'$ as Yetter-Drinfel'd modules. Let $T : (M(m_1, m_2))_{\Phi} \to H \cdot_{\beta'} g'$ be a Yetter-Drinfel'd module isomorphism. Since T is a right comodule homomorphism, $(T \otimes \mathrm{id}_H) \circ \delta_{\Phi} = \Delta \circ T$ and

(5)
$$T(g) \otimes \Phi^{-1}(g) = \Delta(T(g)).$$

Then $\mathbb{K}T(g)$ is a (non-zero) right-coideal of $H_{\cdot \beta'}g'$, but the only non-zero coideal contained in $H_{\cdot \beta'}g'$ is $\mathbb{K}g'$ (see [4]). Therefore T(g) is a multiple of g, and we may assume that T(g) = g'. Applying $\epsilon \otimes id$ to equation 5, we get that $\epsilon(g')\Phi^{-1}(g) = g'$. Since both $\Phi^{-1}(g)$ and g' are grouplike elements, and grouplike elements are linearly independent, we have that $g' = \Phi^{-1}(g) = \omega_1'^d \omega_2'^c$; therefore (e, f) = (d, c), and so

$$\begin{pmatrix} e \\ f \end{pmatrix} = \begin{pmatrix} d \\ c \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}^{-1} \begin{pmatrix} m_2 \\ m_1 \end{pmatrix}.$$

Since T is a homomorphism of left H-modules, $T(\omega'_i \cdot \Phi g) = \omega'_i \cdot \beta' T(g)$. Since

$$T(\omega_i' \cdot_{\Phi} g) = T(\omega_{\tau(i)}' \cdot_{\beta} g) = T(\theta^{m_{\tau(i)}-1} g) = \theta^{m_{\tau(i)}-1} g'$$

and

$$\omega_{i'} \omega_{i'} T(q) = \theta^{n_i - 1} q'.$$

it follows that $(n_1, n_2) = (m_2, m_1)$, and $H_{\cdot \beta'}g' = M(m_2, m_1)$.

References

- V.K. Dobrev, Representations of Quantum Groups, Symmetries in Science V (Lochau 1990), 93–135, Plenum Press, NY, 1991.
- [2] G. Benkart, S. Witherspoon, Restricted two-parameter quantum groups, in: Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry, 293–318, Fields Inst. Commun., vol. 40, Amer. Math. Soc., Providence, RI 2004.
- [3] M. Pereira, Factorization of simple modules for certain pointed Hopf algebras, J. Algebra 318 (2007) 957-980.
- [4] D.E. Radford, On oriented quantum algebras derived from representations of the quantum double of a finite-dimensional Hopf algebra, J. Algebra **270** (2) (2003), 670–695.