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Abstract

We prove that the real roots of normal random homogeneous polyno-
mial systems with n + 1 variables and given degrees are, in some sense,
equidistributed in the projective space P

(
Rn+1

)
. From this fact we com-

pute the average number of real roots of normal random polynomial sys-
tems given in the Bernstein basis.
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1 Introduction and main results

Due to a constant interest in CAGD on Bézier curves and Bernstein polynomials
the question arises to describe theirs properties in terms of their coefficients
when they are given in the Bernstein basis:

bd,k(x) =
(

d

k

)
xk(1− x)d−k, 0 ≤ k ≤ d,

in the case of univariate polynomials, and

bd,α(x1, . . . , xn) =
(

d

α

)
xα1

1 . . . xαn
n (1− x1 − . . .− xn)d−|α|, |α| ≤ d,

for polynomials in n variables. Here α = (α1, . . . , αn) is a multi-integer, |α| =
α1 + . . . + αn, and (

d

α

)
=

d!
α1! . . . αn!(d− |α|)!

is the multinomial coefficient.
In this note we are interested in the average number of real roots of such

equations or systems of equations when the coefficients are taken at random.
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Let us denote by P(d) the set of real polynomial systems in n variables, F = (Fi),
1 ≤ i ≤ n, where

Fi(x1, . . . , xn) =
∑
|α|≤di

a(i)
α xα1

1 . . . xαn
n (1− x1 − . . .− xn)di−|α| .

Here (d) = (d1, . . . , dn) denotes the vector of degrees, di ≥ 1, and deg fi ≤ di

for every i. The space P(d) is equipped with the Euclidean structure defined by
the norm

‖F‖2 =
n∑

i=1

∑
|α|≤di

(
di

α

)−1 ∣∣∣a(i)
α

∣∣∣2 ,

and the corresponding probability measure dF . In other words, the coefficients
a
(i)
α of a polynomial system F ∈ P(d) are independent normal random variables

with mean equal to 0 and variances
(
di

α

)
.

Define
τ : Rn → P

(
Rn+1

)
by

τ(x1, . . . , xn) = [x1, . . . , xn, 1− x1 − . . .− xn].

Here P
(
Rn+1

)
is the projective space associated with Rn+1, [y] is the class of

the vector y ∈ Rn+1, y 6= 0, for the equivalence relation defining this projective
space. The (unique) orthogonally invariant probability measure in P

(
Rn+1

)
is

denoted by λn.
For any measurable set B in Rn we let NB(F ) the number of roots of F

lying in B, and by E (NB(F )) the average number of NB(F ) for F ∈ P(d).

Theorem 1. 1. For any measurable set B in Rn we have

E (NB(F )) = λn(τ(B))
√

d1 . . . dn.

In particular

2. E (NRn(F )) =
√

d1 . . . dn,

3. E (NSn(F )) =
√

d1 . . . dn/2n, where

Sn = {x ∈ Rn : xi ≥ 0 and x1 + . . . + xn ≤ 1} ,

4. When n = 1, for any interval I = [α, β] ⊂ R, one has

E (NI(F )) =

√
d

π
(arctan(2β − 1)− arctan(2α− 1)) .

This theorem is easily deduced from the next one which has its own interest
and which is a consequence of Shub-Smale [10]. The fourth assertion in theorem
1 is deduced from the first assertion but it also can be derived from Crofton’s
formula like in Edelman-Kostlan [5].
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Let us denote by H(d) the space of real homogeneous polynomial systems in
n + 1 variables, F = (Fi), 1 ≤ i ≤ n, where

Fi(x1, . . . , xn, xn+1) =
∑
|α|≤di

a(i)
α xα1

1 . . . xαn
n x

di−|α|
n+1 .

(d) = (d1, . . . , dn) denotes the vector of degrees, di ≥ 1, and degFi = di for
every i. The space H(d) is equipped with the Euclidean structure defined by the
norm

‖F‖2 =
n∑

i=1

∑
|α|≤di

(
di

α

)−1 ∣∣∣a(i)
α

∣∣∣2 ,

and the corresponding probability measure dF .
The real roots of such a system consist in lines through the origin in Rn+1

which are identified to points in P
(
Rn+1

)
. For any measurable set B ⊂ P

(
Rn+1

)
we denote by NB(F) the number of roots of F lying in B, and by E (NB(F))
the average number of NB(F) for F ∈ H(d).

Theorem 2. For any measurable set B ⊂ P
(
Rn+1

)
we have

E (NB(F)) = λn(B)
√

d1 . . . dn.

The first result about the average number of real roots of polynomial equa-
tions is due to Kac [6], [7], who gives the asymptotic value

E (NR(F )) =
2
π

log d

as d tends to infinity when the coefficients of the degree d univariate polynomial
F in the basis of monomials are Gaussian centered independent random variables
N(0, 1). But, when the variance of the k−th coefficient in the basis of monomials
is equal to

(
d
k

)
(Weyl’s distribution), the average number is equal to

E (NR(F )) =
√

d

like in the case of Bernstein polynomials (see Bogomolny-Bohias-Leboeuf [4]
and also Edelman-Kostlan [5]).

Other results of the same vein have been obtained by Shub-Smale [10] who
considered the case of homogeneous polynomial systems under Weyl’s distribu-
tion and Rojas [9] for sparse systems. A general formula for E (NB(F )) when
the random functions Fi, i = 1, . . . , n, are stochastically independent and their
law is centered and invariant under the orthogonal group can be found in Azäıs-
Wschebor [2], which includes the Shub-Smale result as a special case. The
non-centered case is considered in Armentano-Wschebor [1].

2 Proof of theorem 2

For any measurable set B ⊂ P
(
Rn+1

)
let us define

µn(B) = E (NB(F)) .
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We see that µn is an orthogonally invariant measure in P
(
Rn+1

)
. Thus it is

equal to λn up to a multiplicative factor. This factor is equal to
√

d1 . . . dn as
it is easily seen from Shub-Smale [10] (see also [3] section 13.3). Therefore

E (NB(F)) = λn(B)
√

d1 . . . dn.

3 Proof of theorem 1

Let us prove the first item. For any measurable set B ⊂ Rn we have by theorem
2 applied to B = τ(B)

λn(τ(B))
√

d1 . . . dn = E
(
Nτ(B)(F)

)
=

∫
H(d)

Nτ(B)(F)dF .

The map h which associates to F ∈ P(d) the homogeneous system F ∈ H(d)

obtained in substituing xn+1 to the affine form (1−x1− . . .−xn) is an isometry
between these two spaces so that∫

H(d)

Nτ(B)(F)dF =
∫
P(d)

Nτ(B)(h(F ))dF.

Since Nτ(B)(h(F )) = NB(F ) this last integral is equal to
∫
P(d)

NB(F )dF.

To complete the proof of this theorem we notice that λn(τ(Rn)) = 1,
λn(τ(Sn)) = 1/2n, and,

λ1(τ([α, β])) =
1
π

∫ β

α

1
t2 + (1− t)2

dt =
arctan(2β − 1)− arctan(2α− 1)

π
,

which follows from the computation of the length of the path {τ(t)}t∈[α,β] ⊂
P(R).
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