A note about the average number of real roots of a Bernstein polynomial system

Diego Armentano, Jean-Pierre Dedieu *

DRAFT, March 10, 2009

Abstract

We prove that the real roots of normal random homogeneous polynomial systems with $n+1$ variables and given degrees are, in some sense, equidistributed in the projective space $\mathbb{P}\left(\mathbb{R}^{n+1}\right)$. From this fact we compute the average number of real roots of normal random polynomial systems given in the Bernstein basis.

Keywords: Random polynomial system, real root, Bernstein basis

1 Introduction and main results

Due to a constant interest in CAGD on Bézier curves and Bernstein polynomials the question arises to describe theirs properties in terms of their coefficients when they are given in the Bernstein basis:

$$
b_{d, k}(x)=\binom{d}{k} x^{k}(1-x)^{d-k}, \quad 0 \leq k \leq d
$$

in the case of univariate polynomials, and

$$
b_{d, \alpha}\left(x_{1}, \ldots, x_{n}\right)=\binom{d}{\alpha} x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}\left(1-x_{1}-\ldots-x_{n}\right)^{d-|\alpha|},|\alpha| \leq d
$$

for polynomials in n variables. Here $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a multi-integer, $|\alpha|=$ $\alpha_{1}+\ldots+\alpha_{n}$, and

$$
\binom{d}{\alpha}=\frac{d!}{\alpha_{1}!\ldots \alpha_{n}!(d-|\alpha|)!}
$$

is the multinomial coefficient.
In this note we are interested in the average number of real roots of such equations or systems of equations when the coefficients are taken at random.

[^0]Let us denote by $\mathcal{P}_{(d)}$ the set of real polynomial systems in n variables, $F=\left(F_{i}\right)$, $1 \leq i \leq n$, where

$$
F_{i}\left(x_{1}, \ldots, x_{n}\right)=\sum_{|\alpha| \leq d_{i}} a_{\alpha}^{(i)} x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}\left(1-x_{1}-\ldots-x_{n}\right)^{d_{i}-|\alpha|}
$$

Here $(d)=\left(d_{1}, \ldots, d_{n}\right)$ denotes the vector of degrees, $d_{i} \geq 1$, and $\operatorname{deg} f_{i} \leq d_{i}$ for every i. The space $\mathcal{P}_{(d)}$ is equipped with the Euclidean structure defined by the norm

$$
\|F\|^{2}=\sum_{i=1}^{n} \sum_{|\alpha| \leq d_{i}}\binom{d_{i}}{\alpha}^{-1}\left|a_{\alpha}^{(i)}\right|^{2}
$$

and the corresponding probability measure $d F$. In other words, the coefficients $a_{\alpha}^{(i)}$ of a polynomial system $F \in \mathcal{P}_{(d)}$ are independent normal random variables with mean equal to 0 and variances $\binom{d_{i}}{\alpha}$.

Define

$$
\tau: \mathbb{R}^{n} \rightarrow \mathbb{P}\left(\mathbb{R}^{n+1}\right)
$$

by

$$
\tau\left(x_{1}, \ldots, x_{n}\right)=\left[x_{1}, \ldots, x_{n}, 1-x_{1}-\ldots-x_{n}\right]
$$

Here $\mathbb{P}\left(\mathbb{R}^{n+1}\right)$ is the projective space associated with $\mathbb{R}^{n+1},[y]$ is the class of the vector $y \in \mathbb{R}^{n+1}, y \neq 0$, for the equivalence relation defining this projective space. The (unique) orthogonally invariant probability measure in $\mathbb{P}\left(\mathbb{R}^{n+1}\right)$ is denoted by λ_{n}.

For any measurable set B in \mathbb{R}^{n} we let $N_{B}(F)$ the number of roots of F lying in B, and by $\mathbb{E}\left(N_{B}(F)\right)$ the average number of $N_{B}(F)$ for $F \in \mathcal{P}_{(d)}$.

Theorem 1. 1. For any measurable set B in \mathbb{R}^{n} we have

$$
\mathbb{E}\left(N_{B}(F)\right)=\lambda_{n}(\tau(B)) \sqrt{d_{1} \ldots d_{n}}
$$

In particular
2. $\mathbb{E}\left(N_{\mathbb{R}^{n}}(F)\right)=\sqrt{d_{1} \ldots d_{n}}$,
3. $\mathbb{E}\left(N_{S_{n}}(F)\right)=\sqrt{d_{1} \ldots d_{n}} / 2^{n}$, where

$$
S_{n}=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0 \text { and } x_{1}+\ldots+x_{n} \leq 1\right\},
$$

4. When $n=1$, for any interval $I=[\alpha, \beta] \subset \mathbb{R}$, one has

$$
\mathbb{E}\left(N_{I}(F)\right)=\frac{\sqrt{d}}{\pi}(\arctan (2 \beta-1)-\arctan (2 \alpha-1))
$$

This theorem is easily deduced from the next one which has its own interest and which is a consequence of Shub-Smale [10]. The fourth assertion in theorem 1 is deduced from the first assertion but it also can be derived from Crofton's formula like in Edelman-Kostlan [5].

Let us denote by $\mathcal{H}_{(d)}$ the space of real homogeneous polynomial systems in $n+1$ variables, $\mathcal{F}=\left(\mathcal{F}_{i}\right), 1 \leq i \leq n$, where

$$
\mathcal{F}_{i}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=\sum_{|\alpha| \leq d_{i}} a_{\alpha}^{(i)} x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} x_{n+1}^{d_{i}-|\alpha|}
$$

$(d)=\left(d_{1}, \ldots, d_{n}\right)$ denotes the vector of degrees, $d_{i} \geq 1$, and $\operatorname{deg} \mathcal{F}_{i}=d_{i}$ for every i. The space $\mathcal{H}_{(d)}$ is equipped with the Euclidean structure defined by the norm

$$
\|\mathcal{F}\|^{2}=\sum_{i=1}^{n} \sum_{|\alpha| \leq d_{i}}\binom{d_{i}}{\alpha}^{-1}\left|a_{\alpha}^{(i)}\right|^{2}
$$

and the corresponding probability measure $d \mathcal{F}$.
The real roots of such a system consist in lines through the origin in \mathbb{R}^{n+1} which are identified to points in $\mathbb{P}\left(\mathbb{R}^{n+1}\right)$. For any measurable set $\mathcal{B} \subset \mathbb{P}\left(\mathbb{R}^{n+1}\right)$ we denote by $N_{\mathcal{B}}(\mathcal{F})$ the number of roots of \mathcal{F} lying in \mathcal{B}, and by $\mathbb{E}\left(N_{\mathcal{B}}(\mathcal{F})\right)$ the average number of $N_{\mathcal{B}}(\mathcal{F})$ for $\mathcal{F} \in \mathcal{H}_{(d)}$.
Theorem 2. For any measurable set $\mathcal{B} \subset \mathbb{P}\left(\mathbb{R}^{n+1}\right)$ we have

$$
\mathbb{E}\left(N_{\mathcal{B}}(\mathcal{F})\right)=\lambda_{n}(\mathcal{B}) \sqrt{d_{1} \ldots d_{n}}
$$

The first result about the average number of real roots of polynomial equations is due to Kac [6], [7], who gives the asymptotic value

$$
\mathbb{E}\left(N_{\mathbb{R}}(F)\right)=\frac{2}{\pi} \log d
$$

as d tends to infinity when the coefficients of the degree d univariate polynomial F in the basis of monomials are Gaussian centered independent random variables $N(0,1)$. But, when the variance of the k-th coefficient in the basis of monomials is equal to $\binom{d}{k}$ (Weyl's distribution), the average number is equal to

$$
\mathbb{E}\left(N_{\mathbb{R}}(F)\right)=\sqrt{d}
$$

like in the case of Bernstein polynomials (see Bogomolny-Bohias-Leboeuf [4] and also Edelman-Kostlan [5]).

Other results of the same vein have been obtained by Shub-Smale [10] who considered the case of homogeneous polynomial systems under Weyl's distribution and Rojas [9] for sparse systems. A general formula for $\mathbb{E}\left(N_{B}(F)\right)$ when the random functions $F_{i}, i=1, \ldots, n$, are stochastically independent and their law is centered and invariant under the orthogonal group can be found in AzaïsWschebor [2], which includes the Shub-Smale result as a special case. The non-centered case is considered in Armentano-Wschebor [1].

2 Proof of theorem 2

For any measurable set $\mathcal{B} \subset \mathbb{P}\left(\mathbb{R}^{n+1}\right)$ let us define

$$
\mu_{n}(\mathcal{B})=\mathbb{E}\left(N_{\mathcal{B}}(\mathcal{F})\right)
$$

We see that μ_{n} is an orthogonally invariant measure in $\mathbb{P}\left(\mathbb{R}^{n+1}\right)$. Thus it is equal to λ_{n} up to a multiplicative factor. This factor is equal to $\sqrt{d_{1} \ldots d_{n}}$ as it is easily seen from Shub-Smale [10] (see also [3] section 13.3). Therefore

$$
\mathbb{E}\left(N_{\mathcal{B}}(\mathcal{F})\right)=\lambda_{n}(\mathcal{B}) \sqrt{d_{1} \ldots d_{n}}
$$

3 Proof of theorem 1

Let us prove the first item. For any measurable set $B \subset \mathbb{R}^{n}$ we have by theorem 2 applied to $\mathcal{B}=\tau(B)$

$$
\lambda_{n}(\tau(B)) \sqrt{d_{1} \ldots d_{n}}=\mathbb{E}\left(N_{\tau(B)}(\mathcal{F})\right)=\int_{\mathcal{H}_{(d)}} N_{\tau(B)}(\mathcal{F}) d \mathcal{F}
$$

The map h which associates to $F \in \mathcal{P}_{(d)}$ the homogeneous system $\mathcal{F} \in \mathcal{H}_{(d)}$ obtained in substituing x_{n+1} to the affine form $\left(1-x_{1}-\ldots-x_{n}\right)$ is an isometry between these two spaces so that

$$
\int_{\mathcal{H}_{(d)}} N_{\tau(B)}(\mathcal{F}) d \mathcal{F}=\int_{\mathcal{P}_{(d)}} N_{\tau(B)}(h(F)) d F .
$$

Since $N_{\tau(B)}(h(F))=N_{B}(F)$ this last integral is equal to $\int_{\mathcal{P}_{(d)}} N_{B}(F) d F$.
To complete the proof of this theorem we notice that $\lambda_{n}\left(\tau\left(\mathbb{R}^{n}\right)\right)=1$, $\lambda_{n}\left(\tau\left(S_{n}\right)\right)=1 / 2^{n}$, and,

$$
\lambda_{1}(\tau([\alpha, \beta]))=\frac{1}{\pi} \int_{\alpha}^{\beta} \frac{1}{t^{2}+(1-t)^{2}} d t=\frac{\arctan (2 \beta-1)-\arctan (2 \alpha-1)}{\pi}
$$

which follows from the computation of the length of the path $\{\tau(t)\}_{t \in[\alpha, \beta]} \subset$ $\mathbb{P}(\mathbb{R})$.

References

[1] Armentano D., and M. Wschebor, Random systems of polynomial equations. The expected number of roots under smooth analysis. Bernoulli 15, No. 1, (2009), 249-266.
[2] Azaïs J.-M., and M. Wschebor, On the roots of a random system of equations. The theorem of Shub and Smale and some extensions. Fondations of Computational Mathematics (2005) 125-144.
[3] Blum, L., F. Cucker, M. Shub, and S. Smale, Complexity and Real Computation, Springer, 1998.
[4] Bogomolny E., O. Bohias, and P. Leboeuf, Distribution of roots of random polynomials. Phys. Rev. Letters, 68 (1992) 2726-2729.
[5] Edelman A., and E. Kostlan, How many zeros of a random polynomial are real? Bulletin of the AMS, 32 (1995) 1-37 and 33 (1996) 325.
[6] Kac M., On the average number of real roots of a random algebraic equation. Bull. Am. Math. Soc. 49 (1943) 314-320 and 938.
[7] Kac M., On the average number of real roots of a random algebraic equation (II). Proc. London Math. Soc. 50 (1949) 390-408.
[8] Kostlan E., On the expected number of real roots of a system of radom polynomial equations. In: Foundations of Computational Mathematics, Hong Kong 2002, 149-188. World Sci. Pub., 2002.
[9] Rojas M., On the Average Number of Real Roots of Certain Random Sparse Polynomial Systems. In: The Mathematics of Numerical Analysis. Edited by: James Renegar, Michael Shub, and Steve Smale. Lectures in Applied Mathematics. 32 (1996).
[10] Shub, M., and S. Smale, Complexity of Bézout's Theorem II: Volumes and Probabilities in: Computational Algebraic Geometry, F. Eyssette and A. Galligo eds., em Progress in Mathematics, vol. 109, Birkhäuser, 1993, 267-285.

[^0]: *Institut de Mathématiques, Université Paul Sabatier, 31062 Toulouse cedex 09, France (diego.armentano@math.univ-toulouse.fr, jean-pierre.dedieu@math.univ-toulouse.fr). J.-P. Dedieu was supported by the ANR Gecko.

