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Abstract

Smale’s 17th problem asks for an algorithm which finds an approximate
zero of polynomial systems in average polynomial time (see [21]). The main
progress on Smale’s problem is [6] and [10]. In this paper we will improve
on both approaches and prove an interesting intermediate result on the
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average value of the condition number. Our main results are Theorem 1
on the complexity of a randomized algorithm which improves the result
of [6], Theorem 2 on the average of the condition number of polynomial
systems which improves the estimate found in [10], and Theorem 3 on
the complexity of finding a single zero of polynomial systems. This last
theorem is similar to the main result of [10] but relies only on homotopy
methods, thus removing the need for the elimination theory methods used
in [10]. We build on methods developed in [2].

1 Introduction

Homotopy or continuation methods to solve a problem which might depend on
parameters start with a problem instance and known solution and try to continue
the solution along a path in parameter space ending at the problem we wish to
solve. We recall how this works for the solutions of polynomial systems using a
variant of Newton’s method to accomplish the continuation.

Let Hd be the complex vector space of degree d complex homogeneous poly-
nomials in n + 1 variables. For α = (α0, . . . , αn) ∈ Nn+1 satisfying

∑n
j=0 αj = d,

and the monomial zα = zα0
0 · · · zαnn , the Weyl Hermitian structure on Hd makes

〈zα, zβ〉 := 0, for α 6= β and

〈zα, zα〉 :=

(
d

α

)−1

=

(
d!

α0! · · ·αn!

)−1

.

Now for (d) = (d1, . . . , dn) we let H(d) =
∏n

k=1Hdk . This is a complex vector
space of dimension

N :=
n∑
i=1

(
n+ di
n

)
.

That is, N is the size of a system f ∈ H(d), understood as the number of coeffi-
cients needed to describe f .

We endow H(d) with the product Hermitian structure

〈f, g〉 :=
n∑
k=1

〈fi, gi〉,

where f = (f1, . . . , fn), and g = (g1, . . . , gn). This Hermitian structure is some-
times called the Weyl, Bombieri-Weyl, or Kostlan Hermitian structure. It is
invariant under unitary substitution f 7→ f ◦U−1, where U is a unitary transfor-
mation of Cn+1 (see [9, p. 118] for example).

On Cn+1 we consider the usual Hermitian structure

〈x, y〉 :=
n∑
k=0

xk yk.
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Given 0 6= ζ ∈ Cn+1, let ζ⊥ denote the Hermitian complement of ζ,

ζ⊥ := {v ∈ Cn+1 : 〈v, ζ〉 = 0}.

For any nonzero ζ ∈ Cn+1, the subspace ζ⊥ is a model for the tangent space,
TζP(Cn+1), of the projective space P(Cn+1) at the equivalence class of ζ (which
we also denote by ζ). The space TζP(Cn+1) inherits an Hermitian structure from
〈·, ·〉 given by

〈v, w〉ζ :=
〈v, w〉
〈ζ, ζ〉

.

See for example [9, Sec. 12.2] for more details on this standard metric structure
of P(Cn+1).

The group of unitary transformations U acts naturally on Cn+1 by ζ 7→ Uζ
for U ∈ U, and the Hermitian structure of Cn+1 is invariant under this action.

A zero of the system of equations f is a point x ∈ Cn+1 such that fi(x) = 0,
i = 1, . . . , n. If we think of f as a mapping f : Cn+1 → Cn, it is a point x such
that f(x) = 0.

For a generic system (that is, for a Zariski open set of f ∈ H(d)), Bézout’s
theorem states that the set of zeros consists of D :=

∏n
k=1 dk complex lines

through 0. These D lines are D points in projective space P(Cn+1). So our goal
is to approximate one of these points, and we will use homotopy or continuation
methods.

These methods for the solution of a system f ∈ H(d) proceed as follows.
Choose g ∈ H(d) and a zero ζ ∈ P(Cn+1) of g (we denote by the same symbol an
affine point and its projective class). Connect g to f by a path ft, 0 ≤ t ≤ 1, in
H(d) such that f0 = g, f1 = f , and try to continue ζ0 = ζ to ζt such that ft(ζt) = 0,
so that f1(ζ1) = 0 (see [7] for details or [12] for a complete discussion).

So homotopy methods numerically approximate the path (ft, ζt). One way
to accomplish the approximation is via (projective) Newton’s method. Given an
approximation xt to ζt, define

xt+∆t := Nft+∆t
(xt),

where for h ∈ H(d) and y ∈ P(Cn+1) we define the projective Newton’s method
Nh(y) following [17]:

Nh(y) := y − (Dh(y)|y⊥)−1h(y).

Note that Nh is defined on P(Cn+1) at those points where Dh(y)|y⊥ is invertible.
That xt is an approximate zero of ft with associated (exact) zero ζt means that

the sequence of Newton iterations Nk
ft

(xt) converges immediately and quadrati-
cally to ζt.
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Let us assume that {ft}t∈[0,1] is a path in the sphere S(H(d)) := {h ∈ H(d) :
‖h‖ = 1}. The main result of [16]1 is that the ∆tk may be chosen so that t0 = 0,
tk = tk−1 + ∆tk for k = 1, . . . , K with tK = 1, such that for all k, xtk is an
approximate zero of ftk with associated zero ζtk , and the number K of steps can
be bounded as follows:

K = K(f, g, ζ) ≤ C D3/2

∫ 1

0

µ(ft, ζt) ‖(ḟt, ζ̇t)‖ dt. (1.1)

Here C is a universal constant, D = maxi di,

µ(f, ζ) :=

{
‖f‖

∥∥(Df(ζ)|ζ⊥)−1diag(‖ζ‖di−1
√
di)
∥∥ if Df(ζ)|ζ⊥ is invertible

∞ otherwise

is the condition number of f ∈ H(d) at ζ ∈ P(Cn+1), diag(v) is the diagonal
matrix whose diagonal entries are the coordinates of the vector v), and

‖(ḟt, ζ̇t)‖ = (‖ḟt‖2 + ‖ζ̇t‖2
ζt)

1/2

is the norm of the tangent vector to the curve in (ft, ζt). The result in [16] is
not fully constructive, but specific constructions have been given, see [3] and [14],
and even programmed [4]. These constructions are similar to those given in [20]
and [2] (this last, for the eigenvalue-eigenvector problem case).

The constructive versions cited above have slightly different criteria to choose
the step length, which is the backbone of the continuation algorithm. However,
all these algorithms satisfy a unitary invariance in the sense that if U is a unitary
matrix of size n+ 1 then

K(f, g, ζ) = K(f ◦ U∗, g ◦ U∗, Uζ). (1.2)

The right-hand side in expression (1.1) is known as the condition length of
the path (ft, ζt). We will call (1.1) the condition length estimate of the number
of steps.

Taking derivatives w.r.t. t in the equality ft(ζt) = 0 it is easily seen that

ζ̇t = −(Dft(ζt)|ζ⊥t )−1ḟt(ζt), (1.3)

and with some work (see [9, Lemma 12, p. 231] one can prove that

‖ζ̇‖ζt ≤ µ(ft, ζt)‖ḟt‖.

It is known that µ(f, ζ) ≥
√
n ≥ 1, so the estimate (1.1) may be bounded from

above by

K(f, g, ζ) ≤ C ′D3/2

∫ 1

0

µ2(ft, ζt) ‖ḟt‖ dt, (1.4)

1In [16] the theorem is actually proven in the projective space instead of the sphere, which
is sharper, but we only use the sphere version in this paper.
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where C ′ =
√

2C is another constant. Let us call this estimate the µ2-estimate.

The condition length estimate is better than the µ2-estimate, but algorithms
achieving the smaller number of steps are more subtle and the proofs of correct-
ness more difficult.

Indeed in [5] and [10] the authors rely on the µ2-estimate. At the times
of these papers the algorithms achieving the condition length bound where in
development, and [10] includes a construction which achieves the µ2-estimate.

Yet, in a random situation, one might expect the improvement to be similar to
the improvement given by the average of ‖A(x)‖, in all possible directions, com-
pared with ‖A‖ (here, A : Cn → Cn denotes a linear operator), which according
to [1] should give an improvement by a factor of the square root of the domain
dimension. We have accomplished this for the eigenvalue-eigenvector problem in
[2]. Here we use an argument similar to that of [2] to improve the estimate for
the randomized algorithm in [6].

The Beltrán-Pardo randomized algorithm works as follows (see [6], and also
[10]): on input f ∈ H(d),

1. Choose f0 at random and then a zero ζ0 of f0 at random. [6] describes a
general scheme to do so (roughly speaking, one first draws the “linear” part
of f0, computes ζ0 from it, and then draws the “nonlinear” part of f0). An
efficient implementation of this scheme, having running time O(nDN), is
fully described and analyzed in [12, Section 17.6].

2. Then connect f0/‖f0‖ to f/‖f‖ by an arc of a great circle in the sphere,
and invoke the continuation strategy above.

The main result of [6] is that the average number of steps of this procedure is
bounded by O(D3/2nN), and its total average complexity is then O(D3/2nN2)
(since the cost of an iteration of Newton’s method, assuming all di ≥ 2, is O(N),
see [12, Proposition 16.32] and [11, Remark 7.8(1)]).

Our first main result is the following improvement of this last bound.

Theorem 1 (Randomized algorithm) The average number of steps of the
randomized algorithm with the condition length estimate is bounded by

CD3/2nN1/2,

where C is a universal constant.

The constant C can be taken as π√
2
C ′ with C ′ not more than 400 even ac-

counting for input and round-off error, cf. [14].
The randomized algorithm has a nice property as proved in [6]: for every input

system f with no singular zeros, the probability that the algorithm outputs an
approximate zero associated to each of the D zeros of f is exactly 1/D. It can
thus be used to generate a zero of f with the uniform distribution.
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Remark 1 Theorem 1 is an improvement by a factor of 1/N1/2 of the bound
in [6], which results from using the condition length estimate in place of the
µ2-estimate.

Before proceeding with the proof of Theorem 1, we introduce some useful
notation. We define the solution variety

V := {(f, ζ) ∈ H(d) × P(Cn+1) | f(ζ) = 0},

and consider the projections

V
π2π1

H(d) P(Cn+1).
(1.5)

The set of ill-posed pairs is the subset

Σ′ := {(f, ζ) ∈ V | Df(ζ)|ζ⊥ is not invertible} = {(f, ζ) ∈ V | µ(f, ζ) =∞}

and its projection Σ := π1(Σ′) is the set of ill-posed systems. The number of
iterations of the homotopy algorithm, K(f, g, ζ), is finite if and only if the lifting
{(ft, ζt)}t∈[0,1] of the segment {ft}t∈[0,1] does not cut Σ′.

1.1 Note added in proof

This manuscript was submitted to J. FoCM on July 14th, 2015. Just six days
later, we received a note from Pierre Lairez who had found a way to derandom-
ize the main result of [6], thus finding a deterministic answer to Smale’s 17th
problem [15]. The total complexity O(n2D3/2N2) of Lairez’s algorithm is very
similar to that of the original randomized version. According to our Theorem 1,
the complexity bound of the randomized version can be lowered by a factor of
1/
√
N . We think that the same improvement should apply to Lairez’s determin-

istic algorithm.
We want to thank three anonymous referees for helpful comments.

2 Proof of Theorem 1

2.1 Preliminaries

Let us start this section with a few general facts we will use from Gaussian
measures.

Given a finite dimensional real vector space V of dimension m, with an inner
product, we define two natural objects.
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• The unit sphere S(V ) with the induced Riemannian structure and volume

form: the volume of S(V ) is 2πm/2

Γ(m
2

)
.

• The Gaussian measure centered at c ∈ V , with variance σ2

2
> 0, whose

density is
1

σmπm/2
e−‖x−c‖

2/σ2

. (2.6)

We will denote by NV (c, σ2Id) the density given in (2.6). We will skip the
notation of the underlying space when it is understood. Furthermore, we will
denote by Ex∈V the average in the case σ = 1 (that is, variance 1/2).

The following lemma is well known, we however provide a proof because a
similar argument is used later in the manuscript.

Lemma 2 If ϕ : V → [0,+∞] is measurable and homogeneous of degree p > −m,
then

E
x∈V

(ϕ(x)) =
Γ(m+p

2
)

Γ(m
2

)
E

u∈S(V )
(ϕ(u)),

where

E
u∈S(V )

(ϕ(u)) =
1

vol(S(V ))

∫
S(V )

ϕ(u) du.

Proof. Integrating in polar coordinates we have

E
x∈V

(ϕ(x)) =
1

πm/2

∫
x∈V

ϕ(x) e−‖x‖
2

dx

=
1

πm/2

∫ +∞

0

ρm+p−1e−ρ
2

dρ ·
∫
u∈S(V )

ϕ(u) du

=
Γ(m+p

2
)

2πm/2

∫
u∈S(V )

ϕ(u) du =
Γ(m+p

2
)

Γ(m
2

)
E

u∈S(V )
(ϕ(u))

where we have used that
∫ +∞

0
ρke−ρ

2
dρ = 1

2
Γ(k+1

2
). �

The next results follows immediately from Fubini’s theorem.

Lemma 3 Let E be a linear subspace of V , and let Π : V → E be the orthogonal
projection. Then, for any integrable function ψ : E → R and for any c ∈ V ,
σ > 0, we have

E
x∼NV (c,σ2Id)

(ψ(Π(x))) = E
y∼NE(Π(c),σ2Id)

(ψ(y)). �

When V is a finite dimensional Hermitian vector space of complex dimen-
sion m, then the complex Gaussian measure on V with variance σ2 is defined by
the real Gaussian measure with variance σ2/2 on the 2m-dimensional real vector
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space associated to V , whose inner product is the real part of the Hermitian
product.

In this fashion, for any fixed g ∈ H(d) and σ > 0, the Hermitian space
(H(d), 〈·, ·〉) is equipped with the complex Gaussian measure N(g, σ2Id). The
expected value of a function φ : H(d) → R with respect to this measure is given
by

E
f∼N(g,σ2Id)

(φ) =
1

σ2NπN

∫
f∈H(d)

φ(f)e−‖f−g‖
2/σ2

df. (2.7)

Fix any ζ ∈ P(Cn+1). Following [18, Sect. I-4], the space H(d) is orthogonally
decomposed into the sum Cζ ⊕ Vζ , where

Vζ = π−1
2 (ζ) = {f ∈ H(d) : f(ζ) = 0}

is the fiber over ζ and

Cζ =

{
diag

(
〈·, ζ〉di
〈ζ, ζ〉di

)
a : a ∈ Cn

}
(2.8)

is the set of polynomial systems f ∈ H(d) parametrized by a ∈ Cn such that for
z ∈ Cn+1, fi(z) = 〈z, ζ〉di/‖ζ‖2di ai, 1 ≤ i ≤ n. Note that Vζ and Cζ are linear
subspaces of H(d) of respective (complex) dimensions N − n and n. Note also
that

f0 = f − diag

(
〈·, ζ〉di
〈ζ, ζ〉di

)
f(ζ)

is the orthogonal projection Πζ(f) of f onto the fiber Vζ .

2.2 Average condition numbers

In this section we revisit the average value of the operator and Frobenius condition
numbers on H(d). The Frobenius condition number of f at ζ is given by

µF (f, ζ) := ‖f‖
∥∥∥(Df(ζ)|ζ⊥

)−1
diag(‖ζ‖di−1d

1/2
i )
∥∥∥
F
, (2.9)

that is, µF is defined as µ but using Frobenius instead of operator norm. Note
that µ ≤ µF ≤

√
nµ. This version of the condition number was studied in depth

in [8], where it was denoted µ̃ instead of µF .
Given f ∈ H(d) \ Σ, the average of the condition numbers over the fiber is

µ2
av(f) :=

1

D
∑

ζ: f(ζ)=0

µ2(f, ζ), µ2
F,av(f) :=

1

D
∑

ζ: f(ζ)=0

µ2
F (f, ζ)

(or ∞ if f ∈ Σ). For simplicity, in what follows we write S := S(H(d)).
Estimates on the probability distribution of the condition number µ are known

since [19]. The exact expected value of µ2
av(f) when f is in the sphere S was found
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in [6] and the following estimate for the expected value of µ2
av(f) when f is non-

centered Gaussian was proved in [10]: for all f̂ ∈ H(d) and all σ > 0,

E
f∼N(f̂ ,σ2Id)

µ2
av(f)

‖f‖2
≤ e(n+ 1)

2σ2
. (2.10)

The following result slightly improves (2.10), even though it is computed
for µF .

Theorem 2 (Average condition number) For every f̂ ∈ H(d) and σ > 0,

E
f∼N(f̂ ,σ2Id)

µ2
F,av(f)

‖f‖2
≤ n

σ2
,

and equality holds in the centered case.

Remark 4 The equality (in the centered case) of Theorem 2 implies from Lemma 2
with p = −2 that

E
f∈S

µ2
F,av(f) = (N − 1)n.

Remark 5 In the proof of Theorem 2 we use the double fibration technique,
a strategy based on the use of the classical coarea formula, see for example [9,
p. 241]. In order to integrate some real-valued function over H(d) whose value at
some point f is an average over the fiber π−1

1 (f), we lift it to V and then pushfor-
ward to P(Cn+1) using the projections given in (1.5). The original expected value
in H(d) is then written as an integral over P(Cn+1) which involves the quotient of
normal Jacobians of the projections π1 and π2. More precisely,∫

f∈H(d)

∑
ζ: f(ζ)=0

φ(f, ζ) df =

∫
ζ∈P(Cn+1)

∫
(f,ζ)∈π−1

2 (ζ)

φ(f, ζ)
NJπ1

NJπ2

(f, ζ) dπ−1
2 (ζ) dζ,

(2.11)
where

NJπ1

NJπ2

(f, ζ) = | det(Df(ζ)|ζ⊥)|2

(see [9, Section 13.2], [12, Section 17.3], or [2, Theorem 6.2] for further details
and other examples of use).

We point out that the proof of Theorem 2 can also be achieved using the
(slightly) different method of [6] and [12, Chapter 18] based on the mapping
taking (f, ζ) to (Df(ζ), ζ) whose normal Jacobian is known to be constant (see [6,
Main Lemma]).
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Proof of Theorem 2. By the definition of non-centered Gaussian, and
the double-fibration formula (2.11), we have

E
f∼N(f̂ ,σ2Id)

µ2
F,av(f)

‖f‖2
=

1

D

∫
f∈H(d)

( ∑
ζ: f(ζ)=0

µ2
F (f, ζ)

‖f‖2

)
e
−‖f−f̂‖2

σ2

σ2NπN
df (2.12)

=
1

D
1

(σ2π)n

∫
ζ∈P(Cn+1)

e
−‖f̂−Πζ(f̂)‖2

σ2

∫
f∈Vζ

µ2
F (f, ζ)

‖f‖2

∣∣ det
(
Df(ζ)|ζ⊥

) ∣∣2 e−‖f−Πζ(f̂)‖2

σ2

(σ2π)N−n
df dζ,

where we have used that ‖f− f̂‖2 = ‖f−Πζ(f̂)‖2 +‖f̂−Πζ(f̂)‖2 for every f ∈ Vζ
(note that Πζ(f̂) = f̂ if f̂ ∈ Vζ).

We simplify now the integral Iζ(f̂) over the fiber Vζ , that is

Iζ(f̂) :=

∫
f∈Vζ

µ2
F (f, ζ)

‖f‖2

∣∣ det
(
Df(ζ)|ζ⊥

) ∣∣2 e−‖f−Πζ(f̂)‖2

σ2

(σ2π)N−n
df.

Let Uζ be a unitary transformation of Cn+1 such that Uζ(ζ/‖ζ‖) = e0. Then, by
the invariance under unitary substitution of each term under the integral sign,
we have by the change of variable formula with h = f ◦ U∗ζ that

Iζ(f̂) =

∫
h∈Ve0

µ2
F (h ◦ Uζ , ζ)

‖h ◦ Uζ‖2

∣∣ det
(
D(h ◦ Uζ)(ζ)|ζ⊥

) ∣∣2 e−‖h◦Uζ−Πζ(f̂)‖2

σ2

(σ2π)N−n
dh

=

∫
h∈Ve0

µ2
F (h, e0)

‖h‖2

∣∣ det
(
Dh(e0)|e⊥0

) ∣∣2 e−‖h−Πe0 (ĥζ)‖2

σ2

(σ2π)N−n
dh

= E
h∼N(Πe0 (ĥζ),σ2Id)

(
µ2
F (h, e0)

‖h‖2

∣∣ det
(
Dh(e0)|e⊥0

) ∣∣2) ,
where ĥζ := f̂ ◦U−1

ζ . We project now h ∈ Ve0 orthogonally onto the vector space

Le0 := {g ∈ H(d) : g(e0) = 0, Dkg(e0) = 0 for k ≥ 2},

obtaining g ∈ Le0 . Since Dh(e0)|e⊥0 coincides with Dg(e0)|e⊥0 (see for example [12,

Prop. 16.16]), which implies indeed that µF (h, e0)/‖h‖2 = µF (g, e0)/‖g‖2, we
conclude by Lemma 3 that

Iζ(f̂) = E
g∼N(ΠL0

(ĥζ),σ2Id)

(
µ2
F (g, e0)

‖g‖2

∣∣ det
(
Dg(e0)|e⊥0

) ∣∣2) .
By the change of variables given by

Le0 → Cn×n, g 7→ A := diag(d
−1/2
i )Dg(e0)|e⊥0 ,
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which is a linear isometry (see [9, Lemma 17, Ch. 12]), we have
µ2
F,av(g)

‖g‖2 = ‖A−1‖2
F

and denoting by Âζ the image of ΠL0(ĥζ), we obtain that

Iζ(f̂) = E
A∈N(Âζ ,σ2Idn)

(
‖A−1‖2

F | det(A)|2
)
.

We thus conclude from (2.12) that

E
f∼N(f̂ ,σ2Id)

(
µ2
F,av(f)

‖f‖2

)
= (2.13)

1

D
1

(σ2π)n

∫
ζ∈P(Cn+1)

e
−‖f̂−Πζ(f̂)‖2

σ2 E
A∈N(Âζ ,σ2Idn)

(
‖A−1‖2

F | det(A)|2
)
dζ.

If we replace µF,av(f)2/‖f‖2 by the constant function 1 on H(d), the same argu-
ment leading to (2.13) now leads to

1 =
1

D
1

(σ2π)n

∫
ζ∈P(Cn+1)

e
−‖f̂−Πζ(f̂)‖2

σ2 E
A∈N(Âζ ,σ2Idn)

(
| det(A)|2

)
dζ. (2.14)

From Proposition 7.1 of [2], we can bound

E
A∈N(Âζ ,σ2Idn)

(
‖A−1‖2

F | det(A)|2
)
≤ n

σ2 E
A∈N(Âζ ,σ2Idn)

(
| det(A)|2

)
, (2.15)

with equality if Âζ = 0. By combining (2.13), (2.15), and (2.14) we obtain

E
f∼N(f̂ ,σ2Id)

(
µ2
F,av(f)

‖f‖2

)
≤ n

σ2
,

as claimed by the theorem. Moreover, equality holds if f̂ = 0 (which implies

Âζ = 0 for all ζ). �

2.3 Complexity of the randomized algorithm

The goal of this section is to prove Theorem 1. To do so, we begin with some
preliminaries.

For f ∈ S we denote by TfS the tangent space at f of S. This space is
equipped with the real part of the Hermitian structure of H(d), and coincides
with the (real) orthogonal complement of f ∈ H(d).

We consider the map φ : S×H(d) → [0,∞] defined for f 6∈ Σ by

φ(f, ḟ) :=
1

D
∑

ζ: f(ζ)=0

µ(f, ζ)
∥∥(ḟ , ζ̇

)
‖, (2.16)

11



where ζ̇ = −(Df(ζ)|ζ⊥)−1ḟ(ζ), and by φ(f, ḟ) := ∞ if f ∈ Σ. Note that φ

satisfies φ(f, λḟ) = λφ(f, ḟ) for λ ≥ 0.
Suppose that f0, f ∈ S are such that f0 6= ±f and denote by Lf0,f the

shorter great circle segment with endpoints f0 and f . Moreover, let α = dS(f0, f)
denote the angle between f0 and f . If [0, 1] → S, t 7→ ft is the constant speed
parametrization of Lf0,f with endpoints f0 and f1 = f , then ‖ḟt‖ = α. We may
also parametrize Lf0,f by the arc-length s = αt, setting Fs := fα−1s, in which case
Ḟs = α−1ḟt is the unit tangent vector (in the direction of the parametrization) to
Lf0,f at Fs. Moreover, ∫ 1

0

φ(ft, ḟt) dt =

∫ α

0

φ(Fs, Ḟs) ds.

Consider the compact submanifold S of S× S given by

S = {(f, ḟ) ∈ S× S : ḟ ∈ TfS},

which inherits a Riemannian structure from the product S× S.

Lemma 6 Let V ≡ Rm be a finite–dimensional Hilbert space. Let S(V ) be the
unit sphere and

S(V ) = {(x, y) ∈ S(V )× S(V ) : y ∈ TxS(V )}

Then, the projection πV : S(V )→ S(V ), (x, y) 7→ x, has normal Jacobian 1/
√

2.

Proof. Note that S(V ) = {(x, y) ∈ S(V ) × S(V ) : yTx = 0} and from the
regular mapping theorem S(V ) is a hypersurface of S(V ) × S(V ) with tangent
space

T(x,y)S(V ) = {(ẋ, ẏ) ∈ x⊥ × y⊥ : ẏTx+ yT ẋ = 0}.

The kernel of the derivative is easy to compute: Ker(DπV (x, y)) = {(0, ẏ) ∈
x⊥ × y⊥ : ẏTx = 0}. The orthogonal complement X of the kernel is then

X = (KerDπV (x, y))⊥ = {(ẋ, ẏ) ∈ T(x,y)S(V ) : ẏ = λx} = {(ẋ,−(yT ẋ)x) : ẋ ∈ x⊥}.

Let y = ẋ1, ẋ2, . . . , ẋm−1 be an orthogonal basis of x⊥. The linear mapping
DπV (x, y) |X in the associated orthogonal basis

{(y,−x)/
√

2, (ẋ2, 0), . . . , (ẋm−1, 0)}

of X and {ẋ1, . . . , ẋm−1} of TxS is diagonal with entries 1/
√

2, 1, . . . , 1. The
normal Jacobian is thus 1/

√
2 as claimed.

�

The following lemma has been proven in [2].

12



Lemma 7 Let

Iφ := E
f0,f∈S

(∫ 1

0

φ(ft, ḟt) dt

)
.

Then, we have

Iφ =
π

2
E

(f,ḟ)∈S

(
φ(f, ḟ)

)
,

where the expectation on the right hand-side refers to the uniform distribution
on S.

We proceed with a further auxiliary result. For f ∈ S we consider the unit
sphere Sf := {ḟ ∈ TfS : (f, ḟ) ∈ S} in TfS.

Lemma 8 Fix f ∈ S and ζ ∈ P(Cn+1) with f(ζ) = 0. For ḟ ∈ Sf let ζ̇ = ζ̇(ḟ)
be the function of (f, ḟ) and ζ given by ζ̇ = (−Df(ζ)|ζ⊥)−1ḟ(ζ), that is, ζ is as
in (2.16). Then we have

E
ḟ∈Sf

(‖ζ̇‖2) =
1

N − 1
2

∥∥(Df(ζ)|ζ⊥)−1
∥∥2

F
,

where the expectation is with respect to the uniform probability distribution
on Sf .

Proof. Since the map TfS → R, ḟ 7→ ‖ζ̇(ḟ)‖2 is quadratic, we get from
Lemma 2 (recall that dimTfS = 2N − 1)

E
ḟ∈TfS

(‖ζ̇(ḟ)‖2) =
(
N − 1

2

)
E

ḟ∈Sf

(∥∥ζ̇(ḟ)
∥∥2)

.

Recall the definition of Cζ given in (2.8). Note that the mapping H(d) → Cζ given

by ḟ 7→ ΠCζ ḟ is an orthogonal projection, and furthermore Cζ → Cn given by

ḟ 7→ ḟ(ζ) is a linear isometry. Then from Lemma 3, and the change of variables
formula we obtain

E
ḟ∈TfS

(∥∥ζ̇(ḟ)
∥∥2)

= E
ẇ∈Cn

∥∥(Df(ζ)|ζ⊥)−1ẇ
∥∥2

=
∥∥(Df(ζ)|ζ⊥)−1

∥∥2

F
,

where the last equality is straightforward looking at the singular value decompo-
sition of (Df(ζ)|ζ⊥)−1. �

Proof of Theorem 1. The average number of homotopy steps of the
randomized algorithm is given by the following integral:

E
f,f0∈S

( 1

D
∑

ζ0: f0(ζ0)=0

K(f, f0, ζ0)
)
.

13



From (1.1), using the notation there, we know that the number of Newton steps
of the homotopy with starting pair (f0, ζ0) and target system f is bounded as

K(f, f0, ζ0) ≤ CD3/2

∫ 1

0

µ(ft, ζt) ‖(ḟt, ζ̇t)‖ dt.

Hence we get for f, f0 ∈ S,

1

D
∑

ζ0: f0(ζ0)=0

K(f, f0, ζ0) ≤ CD3/2

∫ 1

0

1

D
∑

ζ0: f0(ζ0)=0

µ(ft, ζt) ‖(ḟt, ζ̇t)‖ dt

= CD3/2

∫ 1

0

φ(ft, ḟt) dt.

Therefore, by Lemma 7,

E
f,f0∈S

( 1

D
∑

ζ0: f0(ζ0)=0

K(f, f0, ζ0)
)
≤ C D3/2 π

2
E

(f,ḟ)∈S

(
φ(f, ḟ)

)
. (2.17)

From the coarea formula and Lemma 6, we obtain

E
(f,ḟ)∈S

(
φ(f, ḟ)

)
=
√

2 E
f∈S

E
ḟ∈Sf

(
φ(f, ḟ)

)
=
√

2 E
f∈S

( 1

D
∑

ζ: f(ζ)=0

µ(f, ζ) E
ḟ∈Sf

(∥∥(ḟ , ζ̇)
∥∥)).

In order to estimate this last quantity, note first that from the Cauchy–Schwarz
inequality, for f ∈ S,

E
ḟ∈Sf

(∥∥(ḟ , ζ̇)
∥∥)) = E

ḟ∈Sf

(
(1 + ‖ζ̇‖2)

1
2

)
≤

(
1 + E

ḟ∈Sf
(‖ζ̇‖2)

)1/2

≤
(

1 +
1

N − 1
2

∥∥(Df(ζ)|ζ⊥)−1
∥∥2

F

)1/2

,

the last by Lemma 8. Now we use ‖(Df(ζ)|ζ⊥)−1‖F ≤ µF (f, ζ) and µ(f, ζ) ≤
µF (f, ζ) to deduce

1√
2

E
(f,ḟ)∈S

(
φ(f, ḟ)

)
≤ E

f∈S

(
1

D
∑

ζ: f(ζ)=0

µF (f, ζ)
(

1 +
µ2
F (f, ζ)

N − 1
2

) 1
2

)

≤ E
f∈S

(
1

D
∑

ζ: f(ζ)=0

(
(N − 1

2
)

1
2

2
+

µ2
F (f, ζ)

(N − 1
2
)

1
2

))

=
(N − 1

2
)

1
2

2
+ E

f∈S

(
µ2
F,av(f)

(N − 1
2
)

1
2

)
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the second inequality since for all x ≥ 0 and a > 0 we have

x1/2(1 + a2x)1/2 ≤ 1

2a
+ ax.

A call to Remark 4 finally yields

1√
2

E
(f,ḟ)∈S

(
φ(f, ḟ)

)
≤

(N − 1
2
)

1
2

2
+

(N − 1)n

(N − 1
2
)

1
2

≤
√
N

(
1

2
+ n

)
.

Replacing this bound in (2.17) finishes the proof. �

3 A Deterministic Algorithm

A deterministic solution for Smale’s 17th problem is yet to be found (added in
proof: see Section 1.1). The state of the art for this theme is given in [10] where
the following result is proven.

Theorem 3 There is a deterministic real-number algorithm that on input f ∈
H(d) computes an approximate zero of f in average time NO(log logN). Moreover,
if we restrict data to polynomials satisfying

D ≤ n
1

1+ε or D ≥ n1+ε,

for some fixed ε > 0, then the average time of the algorithm is polynomial in the
input size N .

The algorithm exhibited in [10] uses two algorithmic strategies according to
whether D ≤ n or D > n. In the first case, it applies a homotopy method and in
the second an adaptation of a method coming from symbolic computation.

The goal of this section is to show that a more unified approach, where ho-
motopy methods are used in both cases, yields a proof of Theorem 3 as well.
Besides a gain in expositional simplicity, this approach can claim for it the well-
established numerical stability of homotopy methods.

In all what follows we assume the simpler homotopy algorithm in [10] (as
opposed to those in [3, 14]). Its choice of step length at the kth iteration is
proportional to µ−2(ftk , xtk) (which, in turn, is proportional to µ−2(ftk , ζtk)). For
this algorithm, we have the µ2-estimate (1.4) but not the finer estimate (1.1).

To understand the technical requirements of the analysis of a deterministic
algorithm, let us summarize an analysis (simpler than the one in the preceding
section because of the assumption above) for the randomized algorithm. Recall,
the latter draws an initial pair (g, ζ) from a distribution which amounts to first
draw g from the distribution on S and then draw ζ uniformly among the D
zeros {ζ(1), . . . , ζ(D)} of g. The µ2-estimate (1.4) provides an upper bound for
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the number of steps needed to continue ζ to a zero of f following the great circle
from g to f (assuming ‖f‖ = ‖g‖ = 1 and f 6= ±g). Now (1.4) does not change
if we reparametrize {ft}t∈[0,1] by arc–length, so we can also write it as

K(f, g, ζ) ≤ C ′D3/2

∫ dS(g,f)

0

µ2(fs, ζs) ds,

where dS(g, f) is the spherical distance from g to f . Thus, the average number
of homotopy iterations satisfies

E
f∈S

E
g∈S

1

D

D∑
i=1

K(f, g, ζ(i)) ≤ C ′D3/2 E
f∈S

E
g∈S

1

D

D∑
i=1

∫ dS(g,f)

0

µ2(fs, ζ
(i)
s ) ds

≤ C ′D3/2 E
f∈S

E
g∈S

∫ dS(g,f)

0

µ2
F,av(fs) ds. (3.18)

Let Ps denote the set of pairs (f, g) ∈ S2 such that dS(g, f) ≥ s. Rewriting the
above integral using Fubini, we get

E
f∈S

E
g∈S

∫ dS(g,f)

0

µ2
F,av(fs) ds =

∫ π

0

∫
Ps

µ2
F,av(fs) dfdg ds =

π

2
E
h∈S

µ2
F,av(h),

the second equality holding since for a fixed s ∈ [0, π] and uniformly distributed
(f, g) ∈ Ps, one can show that the system fs is uniformly distributed on S.
Summarizing, we get

E
f∈S

E
g∈S

1

D

D∑
i=1

K(f, g, ζ(i)) ≤ C ′D3/2 π

2
E
h∈S

µ2
F,av(h) =

Rmk. 4
C ′D3/2 π

2
(N − 1)n.

This constitutes an elegant derivation of the previous O(nD3/2N) bound (but
not of the sharper bound of our Theorem 1).

Proof of Theorem 3. If the initial pair (g, ζ) is not going to be random
we face two difficulties. First —as g is not random— the intermediate systems ft
are not going to be uniformly distributed on S. Second —as ζ is not random—
we will need a bound on a given µ2(ft, ζt) rather than one on the mean of these
quantities (over the D possible zeros of ft), as provided by Theorem 2.

Consider a fixed initial pair (g, ζ) with g ∈ S and let s1 be the step length of
the first step of the algorithm (see for example the definition of Algorithm ALH
in [10]), which satisfies

s1 ≥
c

D3/2µ2(g, ζ)
(c a constant). (3.19)

Note that this bound on the length s1 of the first homotopy step depends on the
condition µ(g, ζ) only and is thus independent of the condition at the other zeros
of g.
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Consider also the short portion of great circle contained in S with endpoints
g and f/‖f‖, which we parametrize by arc length and call hs (that is, h0 = g
and hα = f/‖f‖ where α = dS(g, f/‖f‖)), defined for s ∈ [0, α]. Thus, after the
first step of the homotopy, the current pair is (hs1 , x1) and we denote by ζ ′ the
zero of hs1 associated to x1. We will focus on bounding the quantity

H := H(g, ζ) := E
f∈H(d)

1

D

D∑
i=1

K
(
f/‖f‖, hs1 , ζ(i)

)
,

where the sum is over all the zeros ζ(i) of hs1 . This is the average of the number
of homotopy steps over both the system f and the D zeros of hs1 . We will be
interested in this average even though we will not consider algorithms following a
path randomly chosen: the homotopy starts at the pair (g, ζ), moves to (hs1 , x1)
and proceeds following this path.

From (1.4) applied to (hs1 , ζ
(i)),

K
(
f/‖f‖, hs1 , ζ(i)

)
≤ C ′D3/2

∫ α

s1

µ2(hs, ζ
(i)
s ) ‖ḣs‖ ds, (3.20)

Reparametrizing {hs : s1 ≤ s ≤ α} by {ft/‖ft‖ : t1 ≤ t ≤ 1} where ft =
(1− t)g + tf and t1 is such that ft1/‖ft1‖ = hs1 does not change the value of the
path integral in (3.20).

Lemma 9 With the notations above we have

t1 =
1

‖f‖ sinα cot(s1α)− ‖f‖ cosα + 1
≥ c′

D3/2
√
Nµ2(g, ζ)

,

c′ a constant.

Proof. The formula for t1 is shown in [10, Prop. 5.2]. For the bound, we
have

‖f‖ sinα cot(s1α)− ‖f‖ cosα + 1 ≤ ‖f‖ sinα (s1α)−1 + ‖f‖+ 1

≤
√

2N
1

s1

+
√

2N + 1

≤
√

2N

(
D3/2µ2(g, ζ)

c
+ 1 +

1√
2N

)
≤
√
ND3/2µ2(g, ζ)

c′

for an appropriately chosen c′. �

We continue with the proof of Theorem 3. A simple computation shows that

‖ḣt‖ =

∥∥∥∥ ddt
(

ft
‖ft‖

)∥∥∥∥ ≤ ‖f‖‖g‖‖ft‖2
=
‖f‖
‖ft‖2

,
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so we have

K
(
f/‖f‖, hs1 , ζ(i)

)
≤ C ′D3/2 ‖f‖

∫ 1

t1

µ2(ft, ζ
(i)
t )

‖ft‖2
dt. (3.21)

Because of scale invariance, the quantity H satisfies

H = E
f∈H

√
2N

(d)

1

D

D∑
i=1

K(f, hs1 , ζ
(i)),

where the second expectation is taken over a truncated Gaussian (that only draws
systems f with ‖f‖ ≤

√
2N) with density function given by

ρ(f) :=

{
1
P
ϕ(f) if ‖f‖ ≤

√
2N

0 otherwise.

Here ϕ is the density function of the standard Gaussian on H(d) and P :=

Prob{‖f‖ ≤
√

2N}. Note that (following the same arguments as in the proof of
Lemma 2):

P =
1

πN

∫
‖f‖≤

√
2N

e−‖f‖
2

df

=
vol(S(R2N))

πN

∫ √2N

0

t2N−1e−t
2

dt

s=t2
=

1

Γ(N)

∫ 2N

0

sN−1e−s ds ≥ 1

2
,

the last inequality from [13, Th. 1]. We thus have

ρ(f) ≤ 2ϕ(f). (3.22)

Then, using (3.21),

H ≤
√

2NC ′D3/2 E
f∈H

√
2N

(d)

1

D

D∑
i=1

∫ 1

t1

µ2(ft, ζ
(i)
t )

‖ft‖2
dt.

From Lemma 9 we have

t1 ≥
c′

D3/2
√
Nµ2(g, ζ)

for a constant c′ (different from, but close to, c). We thus have proved that there
are constants C ′′, c′ such that

H ≤ C ′′
√
N D3/2 E

f∈H
√

2N
(d)

1

D

D∑
i=1

∫ 1

c′
D3/2√Nµ2(g,ζ)

µ2(ft, ζ
(i)
t )

‖ft‖2
dt

= C ′′
√
N D3/2 E

f∈H
√

2N
(d)

∫ 1

c′
D3/2√Nµ2(g,ζ)

µ2
av(ft)

‖ft‖2
dt.
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Using (3.22) we deduce that

H ≤ 2C ′′
√
N D3/2 E

f∈H(d)

∫ 1

c′
D3/2√Nµ2(g,ζ)

µ2
av(ft)

‖ft‖2
dt

≤ 2C ′′
√
N D3/2

∫ 1

c′
D3/2√Nµ(g,ζ)2

E
f∈H(d)

µ2
F,av(ft)

‖ft‖2
dt.

We next bound the expectation in the right-hand side using Theorem 2 and the
fact that ft ∼ N((1− t)g, t2Id) and obtain

H ≤ 2nC ′′
√
N D3/2

∫ 1

c′
D3/2√Nµ2(g,ζ)

1

t2
dt

≤ C ′′′D3nNµ2(g, ζ), (3.23)

with C ′′′ yet another constant.
Having reached thus far, the major obstacle we face is that the quantity H,

for which we derived the bound (3.23), is an average over all initial zeros of hs1 (as
well as over f). None of the two solutions below is fully satisfactory but together
they can handle a broad range of pairs (n,D) with a moderate complexity.

Case 1: D > n. Consider any g ∈ S, ζ a well-posed zero of g, and let
ζ(1), . . . , ζ(D) be the zeros of hs1 . Note that when f is Gaussian, these are D
different zeros almost surely. Clearly,

E
f∈H(d)

K(f, g, ζ) ≤ 1 + E
f∈H(d)

D∑
i=1

K(f, hs1 , ζ
(i))

= 1 +DH = O(DD3Nnµ2(g, ζ))

the last by (3.23). We now take as initial pair (g, ζ) the pair (g, e0) where g =
(g1, . . . , gn) is given by

gi =

√
di
n
Xdi−1

0 Xi, for i = 1, . . . , n

(the scaling factor guaranteeing that ‖g‖ = 1) and e0 = (1, 0, . . . , 0) ∈ Cn+1. It is
easy to see that µ(g, e0) =

√
n (and that all other zeros of g are ill-posed, but this

is not relevant for our argument). Replacing this equality in the bound above we
obtain

E
f∈H(d)

K(f, g, e0) = O(DD3Nn2), (3.24)

which implies an average cost of O(DD3N2n2) since the number of operations at
each iteration of the homotopy algorithm is O(N) (see [12, Proposition 16.32]).
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For any ε > 0 this quantity is polynomially bounded in N provided D ≥ n1+ε

and is bounded as NO(log logN) when D is in the range [n, n1+ε] ([10, Lemma 11.1]).

Case 2: D ≤ n. The occurrence of D makes the bound in (3.24) too large
when D is small. In this case, we consider the initial pair (U, z1) where U ∈ H(d)

is given by

U1 =
1√
2n

(Xd1
0 −Xd1

1 ), . . . , Un =
1√
2n

(Xdn
0 −Xdn

n ),

(the scaling factor guaranteeing that ‖U‖ = 1) and z1 = (1, 1, . . . , 1). We denote
by z1, . . . , zD the zeros of U .

The reason for this choice is a strong presence of symmetries. More exactly,
for any i 6= j there exists a unitary matrix Uij of size n+ 1 such that Uijzi = zj
and U ◦ (Uij)

∗ = U . That is,

(U ◦ (Uij)
∗, Uijzi) = (U, zj).

In particular, from (1.2) and the unitary change of variables f 7→ f ◦ (Uij)
∗ we

have

E
f∈H(d)

K(f, U, z1) =
1

D

D∑
j=1

E
f∈H(d)

K(f, U, zj).

These symmetries also guarantee that, for all 1 ≤ i, j ≤ D,

µ(U, zi) = µ(U, zj), (3.25)

and, consequently, that the value of s1 is the same for all the zeros of U . Hence,

E
f∈H(d)

K(f, U, z1) =
1

D

D∑
j=1

E
f∈H(d)

K(f, U, zj) = E
f∈H(d)

1

D

D∑
j=1

K(f, U, zj)

≤ E
f∈H(d)

1

D

D∑
j=1

(
1 +K(f, hs1 , ζ

(j))
)

(3.26)

= 1 +
1

D

D∑
j=1

H(U, zi) = 1 +H(U, z1),

the last equality because the unique dependence on j of H(U, zj) is in the value
of s1 and as said above this value is independent of j.

Note now that for i 6= j, the isometric change of variables f 7→ f ◦ (Uij)
∗ gives

E
f∈H(d)

1

D

D∑
j=1

(
K(f, hs1 , ζ

(j))
)

= E
f∈H(d)

1

D

D∑
j=1

(
K(f ◦ Uij, hs1 , ζ(j))

)
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That is, the average (w.r.t. f) number of homotopy steps with initial system
U is the same no matter whether the zero of U is taken at random or set to be
z1. Also,

µ2(U, z1) ≤ 2 (n+ 1)D (3.27)

(actually such bound holds for all zeros of U but, again, this is not relevant for
our argument). Both (3.25) and (3.27) are proved in [10, Section 10.2]. It follows
from (3.26), (3.23), and (3.27) that

E
f∈H(d)

K(f, U, z1) = O(D3NnD+1). (3.28)

As above, for any fixed ε > 0 this bound is polynomial in N provided D ≤ n
1

1+ε

and is bounded by NO(log logN) when D ∈ [n
1

1+ε , n]. �
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